What is multiobjective clustering? - machine-learning

I don't understand what is the multiobjective clustering is it using multiple variables for clustering or what?
I know that stack overflow might not be the best for this kind of questions, but
I've asked it on other website and I did not got a response.

Multiobjective optimization in general means that you have multiple criterions which you are interested in, which cannot be simply converted to something comparable. For example consider problem when you try to have very fast model and very accurate one. Time is measured in s, accuracy in %. How do you compare (1s, 90%) and (10days, 92%)? Which one is better? In general there is no answer. Thus what people usually do - they look for pareto front, so you test K models and selec M <= K of them such that, none of them is clearly "beaten" by any else. For example if we add (1s, 91%) to the previous example, Pareto front will be {(1s, 91%), (10days, 92%)} (as (1s, 90%) < (1s, 91%), and remaining ones are impossible to compare).
And now you can apply the same problem in clustering setting. Say for example that you want to build a model which is fast to classify new instances, minimizes avg. distance inside each cluster, and does not put into each cluster too many special instances labeled with X. Then again you will get models (clusterings) which are now characterized by 3, not comparable, measures, and in Multiobjective Clustering you try to deal with these problems (like for example finding Pareto front of such clusterings).

Related

Optimize deep Q network with long episode

I am working on a problem for which we aim to solve with deep Q learning. However, the problem is that training just takes too long for each episode, roughly 83 hours. We are envisioning to solve the problem within, say, 100 episode.
So we are gradually learning a matrix (100 * 10), and within each episode, we need to perform 100*10 iterations of certain operations. Basically we select a candidate from a pool of 1000 candidates, put this candidate in the matrix, and compute a reward function by feeding the whole matrix as the input:
The central hurdle is that the reward function computation at each step is costly, roughly 2 minutes, and each time we update one entry in the matrix.
All the elements in the matrix depend on each other in the long term, so the whole procedure seems not suitable for some "distributed" system, if I understood correctly.
Could anyone shed some lights on how we look at the potential optimization opportunities here? Like some extra engineering efforts or so? Any suggestion and comments would be appreciated very much. Thanks.
======================= update of some definitions =================
0. initial stage:
a 100 * 10 matrix, with every element as empty
1. action space:
each step I will select one element from a candidate pool of 1000 elements. Then insert the element into the matrix one by one.
2. environment:
each step I will have an updated matrix to learn.
An oracle function F returns a quantitative value range from 5000 ~ 30000, the higher the better (roughly one computation of F takes 120 seconds).
This function F takes the matrix as the input and perform a very costly computation, and it returns a quantitative value to indicate the quality of the synthesized matrix so far.
This function is essentially used to measure some performance of system, so it do takes a while to compute a reward value at each step.
3. episode:
By saying "we are envisioning to solve it within 100 episodes", that's just an empirical estimation. But it shouldn't be less than 100 episode, at least.
4. constraints
Ideally, like I mentioned, "All the elements in the matrix depend on each other in the long term", and that's why the reward function F computes the reward by taking the whole matrix as the input rather than the latest selected element.
Indeed by appending more and more elements in the matrix, the reward could increase, or it could decrease as well.
5. goal
The synthesized matrix should let the oracle function F returns a value greater than 25000. Whenever it reaches this goal, I will terminate the learning step.
Honestly, there is no effective way to know how to optimize this system without knowing specifics such as which computations are in the reward function or which programming design decisions you have made that we can help with.
You are probably right that the episodes are not suitable for distributed calculation, meaning we cannot parallelize this, as they depend on previous search steps. However, it might be possible to throw more computing power at the reward function evaluation, reducing the total time required to run.
I would encourage you to share more details on the problem, for example by profiling the code to see which component takes up most time, by sharing a code excerpt or, as the standard for doing science gets higher, sharing a reproduceable code base.
Not a solution to your question, just some general thoughts that maybe are relevant:
One of the biggest obstacles to apply Reinforcement Learning in "real world" problems is the astoundingly large amount of data/experience required to achieve acceptable results. For example, OpenAI in Dota 2 game colletected the experience equivalent to 900 years per day. In the original Deep Q-network paper, in order to achieve a performance close to a typicial human, it was required hundres of millions of game frames, depending on the specific game. In other benchmarks where the input are not raw pixels, such as MuJoCo, the situation isn't a lot better. So, if you don't have a simulator that can generate samples (state, action, next state, reward) cheaply, maybe RL is not a good choice. On the other hand, if you have a ground-truth model, maybe other approaches can easily outperform RL, such as Monte Carlo Tree Search (e.g., Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning or Simple random search provides a competitive approach to reinforcement learning). All these ideas a much more are discussed in this great blog post.
The previous point is specially true for deep RL. The fact of approximatting value functions or policies using a deep neural network with millions of parameters usually implies that you'll need a huge quantity of data, or experience.
And regarding to your specific question:
In the comments, I've asked a few questions about the specific features of your problem. I was trying to figure out if you really need RL to solve the problem, since it's not the easiest technique to apply. On the other hand, if you really need RL, it's not clear if you should use a deep neural network as approximator or you can use a shallow model (e.g., random trees). However, these questions an other potential optimizations require more domain knowledge. Here, it seems you are not able to share the domain of the problem, which could be due a numerous reasons and I perfectly understand.
You have estimated the number of required episodes to solve the problem based on some empirical studies using a smaller version of size 20*10 matrix. Just a caution note: due to the curse of the dimensionality, the complexity of the problem (or the experience needed) could grow exponentially when the state space dimensionalty grows, although maybe it is not your case.
That said, I'm looking forward to see an answer that really helps you to solve your problem.

Supervised learning linear regression

I am confused about how linear regression works in supervised learning. Now I want to generate a evaluation function for a board game using linear regression, so I need both the input data and output data. Input data is my board condition, and I need the corresponding value for this condition, right? But how can I get this expected value? Do I need to write an evaluation function first by myself? But I thought I need to generate an evluation function by using linear regression, so I'm a little confused about this.
It's supervised-learning after all, meaning: you will need input and output.
Now the question is: how to obtain these? And this is not trivial!
Candidates are:
historical-data (e.g. online-play history)
some form or self-play / reinforcement-learning (more complex)
But then a new problem arises: which output is available and what kind of input will you use.
If there would be some a-priori implemented AI, you could just take the scores of this one. But with historical-data for example you only got -1,0,1 (A wins, draw, B wins) which makes learning harder (and this touches the Credit Assignment problem: there might be one play which made someone lose; it's hard to understand which of 30 moves lead to the result of 1). This is also related to the input. Take chess for example and take a random position from some online game: there is the possibility that this position is unique over 10 million games (or at least not happening often) which conflicts with the expected performance of your approach. I assumed here, that the input is the full board-position. This changes for other inputs, e.g. chess-material, where the input is just a histogram of pieces (3 of these, 2 of these). Now there are much less unique inputs and learning will be easier.
Long story short: it's a complex task with a lot of different approaches and most of this is somewhat bound by your exact task! A linear evaluation-function is not super-uncommon in reinforcement-learning approaches. You might want to read some literature on these (this function is a core-component: e.g. table-lookup vs. linear-regression vs. neural-network to approximate the value- or policy-function).
I might add, that your task indicates the self-learning approach to AI, which is very hard and it's a topic which somewhat gained additional (there was success before: see Backgammon AI) popularity in the last years. But all of these approaches are highly complex and a good understanding of RL and the mathematical-basics like Markov-Decision-Processes are important then.
For more classic hand-made evaluation-function based AIs, a lot of people used an additional regressor for tuning / weighting already implemented components. Some overview at chessprogramming wiki. (the chess-material example from above might be a good one: assumption is: more pieces better than less; but it's hard to give them values)

Machine Learning: How to detect the independent variables that are generating a dependent boolean value

I'm Trying to use machine learning in my job, but I can't find a way to adapt it to what I need. And I don't know if it is already a known problem or if I'm working with something that doesn't have a known solution yet.
Let's say that I have a lot of independent variables, encoded as onehot, and a dependent variable with only two status: True (The result had an error) and False (The result was successful)
My independent variables are the parameters I use for a query in an API, and the result is the one that returned the API.
My objective is to detect a pattern where I can see in a dataset in a certain timeframe of a few hours, the failing parameters, so I can avoid to query the API if I'm certain that it could fail.
(I'm working with millions of queries per day, and this mechanism is critical for a good user experience)
I'll try to make an example so you can understand what I need.
Suppose that I have a delivery company, I count with 3 trucks, and 3 different routes I could take.
So, my dummy variables would be T1,T2,T3,R1,R2 and R3 (I could delete T3 and R3 since there are considered by the omission of the other 2)
Then, I have a big dataset of the times that the delivery was delayed. So: Delayed=1 or Delayed=0
With this, I would have a set like this:
T1_|_T2_|_T3_|_R1_|_R2_|_R3||Delayed
------------------------------------
_1_|_0__|_0__|_1__|_0__|_0_||____0__
_1_|_0__|_0__|_0__|_1__|_0_||____1__
_0_|_1__|_0__|_1__|_0__|_0_||____0__
_1_|_0__|_0__|_0__|_1__|_0_||____1__
_1_|_0__|_0__|_1__|_0__|_0_||____0__
Not only I want to say "in most cases, truck 1 arrives late, it could have a problem, I shouldn't send it more", that is a valid result too, but I also want to detect things like: "in most cases, truck 1 arrives late when it goes in the route 1, probably this type of truck has a problem on this specific route"
This dataset is an example, the real one is huge, with thousand of dependent variables, so it could probably have more than one problem in the same dataset.
example: truck 1 has problems in route 1, and truck 3 has problems in route 1.
example2: truck 1 has problems in route 1, and truck 3 has problems in any route.
So, I would make a blacklist like:
example: Block if (truck=1 AND route=1) OR (truck=3 AND route=1)
example2: Block if (truck=1 AND route=1) OR truck=3
I'm actually doing this without machine learning, with an ugly code that makes a massive cartesian product of the independent columns, and counts the quantity of "delayed". Then I choose the worst delayed/total proportion, I blacklist it, and I iterate again with new values.
This errors are commonly temporary, so I would send a new dataset every few hours, I don't need a lifetime span analysis, except that the algorithm considers these temporary issues.
Anyone has a clue of what can I use, or where can I investigate about it?
Don't hesitate to ask for more info if you need it.
Thanks in advance!
Regards
You should check out the scikit-learn package for machine learning classifiers (Random Forest is an industry standard). For this problem, you could feed a portion of the data (training set, say 80% of the data) to the model and it would learn how to predict the outcome variable (delayed/not delayed).
You can then test the accuracy of your model by 'testing' on the remaining 20% of your data (the test set), to see if your model is any good at predicting the correct outcome. This will give you a % accuracy. Higher is better generally, unless you have severely imbalanced classes, in which case your classifier will just always predict the more common class for easy high accuracy.
Finally, if the accuracy is satisfactory, you can find out which predictor variables your model considered most important to achieve that level of prediction, i.e. Variable Importance. I think this is what you're after. So running this every few hours would tell you exactly which features (columns) in your set are best at predicting if a truck is late.
Obviously, this is all easier said than done and often you will have to perform significant cleaning of your data, sometimes normalisation (not in the case of random forests though), sometimes weighting your classifications, sometimes engineering new features... there is a reason this is a dedicated profession.
Essentially what you're asking is "how do I do Data Science?". Hopefully this will get you started, the rest (i.e. learning) is on you.

Grouping points that represent lines

I am looking for an Algorithm that is able to solve this problem.
The problem:
I have the following set points:
I want to group the points that represents a line (with some epsilon) in one group.
So, the optimal output will be something like:
Some notes:
The point belong to one and only line.
If the point can be belong to two lines, it should belong to the strongest.
A line is considered stronger that another when it has more belonging points.
The algorithm should not cover all points because they may be outliers.
The space contains many outliers it may hit 50% of the the total space.
Performance is critical, Real-Time is a must.
The solutions I found till now:
1) Dealing with it as clustering problem:
The main drawback of this method is that there is no direct distance metric between points. The distance metric is on the cluster itself (how much it is linear). So, I can not use traditional clustering methods and I have to (as far as I thought) use some kind of, for example, clustering us genetic algorithm where the evaluation occurs on the while cluster not between two points. I also do not want to use something like Genetic Algorithm While I am aiming real-time solution.
2) accumulative pairs and then do clustering:
While It is hard to make clustering on points directly, I thought of extracting pairs of points and then try to cluster them with others. So, I have a distance between two pairs that can represents the linearity (two pairs are in real 4 points).
The draw-back of this method is how to choose these pairs? If I depend on the Ecledian-Distance between them, it may not be accurate because two points may be so near to each other but they are so far from making a line with others.
I appreciate any solution, suggest, clue or note. Please you may ask about any clarification.
P.S. You may use any ready OpenCV function in thinking of any solution.
As Micka advised, I used Sequential-RANSAC to solve my problem. Results were fantastic and exactly as I want.
The idea is simple:
Apply RANSAC with fit-line model on the points.
Delete all points that are in-liers of the output of RANSAC.
While there are 2 or more points go to 1.
I have implemented my own fit-line RANSAC but unfortnantly I can not share code because it belongs to the company I work for. However, there is an excellent fit-line RANSAC here on SO that was implemented by Srinath Sridhar. The link of the post is : RANSAC-like implementation for arbitrary 2D sets.
It is easy to make a Sequential-RANSAC depending on the 3 simple steps I mentioned above.
Here are some results:

What is the appropriate Machine Learning Algorithm for this scenario?

I am working on a Machine Learning problem which looks like this:
Input Variables
Categorical
a
b
c
d
Continuous
e
Output Variables
Discrete(Integers)
v
x
y
Continuous
z
The major issue that I am facing is that Output Variables are not totally independent of each other and there is no relation that can be established between them. That is, there is a dependence but not due to the causality (one value being high doesn't imply that the other will be high too but the chances of other being higher will improve)
An Example would be:
v - Number of Ad Impressions
x - Number of Ad Clicks
y - Number of Conversions
z - Revenue
Now, for an Ad to be clicked, it has to first appear on a search, so Click is somewhat dependent on Impression.
Again, for an Ad to be Converted, it has to be first clicked, so again Conversion is somewhat dependent on Click.
So running 4 instances of the problem predicting each of the output variables doesn't make sense to me. Infact there should be some way to predict all 4 together taking care of their implicit dependencies.
But as you can see, there won't be a direct relation, infact there would be a probability that is involved but which can't be worked out manually.
Plus the output variables are not Categorical but are in fact Discrete and Continuous.
Any inputs on how to go about solving this problem. Also guide me to existing implementations for the same and which toolkit to use to quickly implement the solution.
Just a random guess - I think this problem can be targeted by Bayesian Networks. What do you think ?
Bayesian Networks will do fine in your case. Your network won't be that huge either so you can live with exact inference algorithms like graph elimination or junction tree. If you decide to use BNs, then you can use Kevin Murphy's BN toolbox. Here is a link to that. For a more general toolbox that uses Gibbs sampling for approximate Monte Carlo inference, you can use BUGS.
Edit:
As an example look at the famous sprinkler example here. For totally discrete variables, you define the conditional probability tables as in the link. For instance you say that given that today is cloudy, there is a 0.8 probability of rain. You define all probability distributions, where the graph shows the causality relations (i.e. if cloud then rain etc.) Then as query you ask to your inference algorithm questions like, given that grass was wet; was it cloudy, was it raining, was the sprinkler on and so on.
To use BNs one needs a system model that is described in terms of causality relations (Directed Acyclic Graph) and probability transitions. If you wanna learn your system parameters there are techniques like EM algorithm. However, learning the graph structure is a really hard task and supervised machine learning approaches will do better in that case.

Resources