I'm working on taxi booking service and using Parse as a backend.
-Client adding new Order (which contains pick up point coordinates and destination point coordinates), and cloud code should match the closest Driver (parameter 'currentLocation') to the pick point.
-Then system offering an Order to the Driver, if Driver not responding or declining an Order, system should find another Driver.
What algorithm should I have on cloud code side? I think I should have anything like matching session, but have no idea of doing this yet. Also: driver should accept order in 2mins, or order will be declined and will go to another Driver. Thank you!
I've searched around a while and all of the IP --> Hostname things actually only end up giving an ISP. Is there something that goes beyond that? I'm only finding pay services that go further and not something that I can just tap a nice API and programmatically do it.
http://ipinfo.io/ just ends up showing ISP for many of what I've sampled. I saw that guy posts here fairly often.
whoisvisiting.com runs about $99/mnth for what my company site does but in that range I'd rather code something. I'm using the free trial right now and have the IP's logging to analytics so I'm looking at what it returns, what IIS returns as the hostname and what a couple sources like ipinfo.io show and whoisvisiting somehow actually shows what I'm looking for.
There's no way to do so. There's no central registry for which company has which address ranges. In fact, most companies will just be identifiable via their ISP.
Your paid services might be scams, by the way, or just work on very few select companies and universities that actually act as autonomous entities in the IP sense.
It is unlikely to differentiate between ISP or company IP address. Some geolocation providers will use range size or level of allocation to name ISP or business. However, this approach is not always accurate.
I've read in Wikipedia that one of the ways to obtain geolocation information for a given IP is done using DNSBL. The following link is: http://en.wikipedia.org/wiki/Geolocation_software#Data_sources
Could someone explain me how this is done? And in general, what is DNSBL rather than a banning list?
DNSBL is a blacklist/database based on dns. DNS is just your api to get a specific result. Others could be HTTP or a simple local file.
IP needs routing and thus the physical machines doing that are placed in certain locations. Knowing that makes it possible to collect data where the routing points are and thus get to closest location of a certain IP address. (Knowing that there are 5 big co
http://en.wikipedia.org/wiki/Geo_targeting
http://en.wikipedia.org/wiki/LOC_record
http://en.wikipedia.org/wiki/Regional_Internet_registry
I'm setting up a iPhone tracking system for my friends, so they can submit their location to my website by their iPhone, anywhere, anytime - by WiFi or cellular data.
The website will use Google Maps for their coordination's so that my other friends can track where they are, however, it is the accuracy of the IP to coordinates to Google Maps is what I'm concerned about, exactly how accurate is it to use Google Maps that would track down the locations by an IP address?
I was thinking about 95%, but this was tested in a village which was quite fairly accurate, but what happens if it was in a city? Would this cause unaccurate locations?
Any kind help appreciated.
IP geolocation is really hit-or-miss, depending on both how the user's ISP assigns IPs and on the IP geolocation database you're using. For instance, I made a simple PHP script, IP2FireEagle, which looks up your IP. I found that the database kept placing me 10+ km to the west of where I really was. Updating my entry in Host IP wasn't the greatest, as it soon got reverted, presumably by someone also occasionally assigned that IP by my ISP! That being said, I found that Clarke has very accurate coordinates (not that this it's using IP geolocation per se but rather Skyhook's API and their WiFi geolocation database).
If it's a website for your friends and you know they have iPhones, I would suggest using its browser's support for navigator.geolocation.getCurrentPosition(). That is, get the location via Javascript and submit it to your server via an AJAX call. Even better since you want to use Google Maps, they give you a short tutorial on how get your friends' locations and then update a map.
Excerpt From:
http://www.clickz.com/822881
IP targeting has been around since the early days of ad serving. It's not very hard to write code that will strip the IP address from a request, compare it to a database, and deliver an ad accordingly. The true difficulty, as we shall see, is building and maintaining an IP database.
One of the first applications of information in an IP database was targeting to specific geographic regions. Most commercial ad management systems have IP databases that can make geographic targeting possible. However, there are a couple weaknesses in this method. The first (and biggest) problem is that, for various reasons, not all IPs can be mapped to an accurate location.
Take all the IPs associated with AOL users, for instance. Anybody who has seen a WebTrends report knows that all AOL users appear to be coming from somewhere in Virginia. This is caused by AOL's use of proxy servers to handle their web requests.
In the interest of saving space, we won't get into the reasons why AOL makes use of proxy servers. The important thing is that AOL does use them, and as a result, all its users appear to be accessing the web from Virginia. Thus, it is impossible to attach meaningful geographic location data to an AOL IP, and those IPs must be discarded from any database that wants to maintain a reasonable degree of accuracy.
Other ISPs and networks may use a method known as dynamic IP allocation for its users. In other words, a user might have a different IP address every time he visits the Internet. You can see how this might affect the accuracy of a database.
But the real difficulty in discerning geography from an IP address has to do with the level of specificity that a media planner might expect from this targeting method. The first few geo-targeted campaigns that I put together early in my career had to be accurate to the ZIP code level. This level of specificity is not practical via IP targeting.
Right this is confusing me quite a bit, i'm not sure if any of you have noticed or used the "my location" feature on google maps using your desktop (or none GPS/none mobile device). If you have a browser with google gears (easiest to use is Google Chrome) then you will have a blue circle above the zoom function in Google Maps, when clicked (without being logged into my Google Account) using standard Wi Fi to my own personal router and a normal internet connection to my ISP, it somehow manages to pinpoint my exact location with a 100% accuracy (at this moment in time).
How does it do it? they breifly mention it here but it doesn't quite explain it, it says that my browser knows where i am...
...i am baffled, how?
I am intrigued because I would love to integrate it in the future of my programming projects, just like some background understanding and it doesn't seem too well documented at the moment.
I am currently in Tokyo, and I used to be in Switzerland. Yet, my location until some days ago was not pinpinted exactly, except in the broad Tokyo area. Today I tried, and I appear to be in Switzerland. How?
Well the secret is that I am now connected through wireless, and my wireless router has been identified (thanks to association to other wifis around me at that time) in a very accurate area in Switzerland. Now, my wifi moved to Tokyo, but the queried system still thinks the wifi router is in Switzerland, because either it has no information about the additional wifis surrounding me right now, or it cannot sort out the conflicting info (namely, the specific info about my wifi router against my ip geolocation, which pinpoints me in the far east).
So, to answer your question, google, or someone for him, did "wardriving" around, mapping the wifi presence. Every time a query is performed to the system (probably in compliance with the W3C draft for the geolocation API) your computer sends the wifi identifiers it sees, and the system does two things:
queries its database if geolocation exists for some of the wifis you passed, and returns the "wardrived" position if found, eventually with triangulation if intensities are present. The more wifi networks around, the higher is the accuracy of the positioning.
adds additional networks you see that are currently not in the database to their database, so they can be reused later.
As you see, the system builds up by itself. The only thing you need is good seeding. After that, it extends in "50 meters chunks" (the range of a newly found wifi connection).
Of course, if you really want the system go banana, you can start exchanging wifi routers around the globe with fellow revolutionaries of the no-global-positioning movement.
It's a lot more simple that you think. You've signed into both your mobile and Chrome on your desktop using the same Google account. Google simply expect you will have your mobile with you most of the time. They take the location data from your phone and assume the location of your current desktop session is the same.
I proved this by RDPing into my Windows machine at home from work and checking Google maps remotely. It show my location as the same as Chrome on Linux at work.
If you don't have a mobile that is signed into Google then all they can do is lookup GeoIP data for the IP address assigned by your ISP. It will typically be wildly inaccurate.
They use a combination of IP geolocation, as well as comparing the results of a scan for nearby wireless networks with a database on their side (which is built by collecting GPS coordinates alongside wifi scan data when Android phone users use their GPS)
I've finally worked it out. The biggest issue is how they managed to work out what Wireless networks were around me and how do they know where these networks are.
It "seems" to be something similar to this:
skyhookwireless.com [or similar] Company has mapped the location of many wireless access points, i assume by similar means that google streetview went around and picked up all the photos.
Using Google gears and my browser, we can report which wireless networks i see and have around me
Compare these wireless points to their geolocation and triangulate my position.
Reference: Slashdot
According to Google Maps' own help:
Rejecting the WiFi networks idea!
Sorry folks... I don't see it. Using WiFi networks around you seems to be a highly inaccurate and ineffective method of collecting data. WiFi networks these days simply don't stay long in one place.
Think about it, the WiFi networks change every day. Not to mention MiFi and Adhoc networks which are "designed" to be mobile and travel with the users. Equipment breaks, network settings change, people move... Relying on "WiFi Networks" in your area seems highly inaccurate and in the end may not even offer a significant improvement in granularity over IP lookup.
I think the idea that iPhone users are "scanning and sending" the WiFi survey data back to google, and the wardriving, perhaps in conjunction with the Google Maps "Street View" mapping might seem like a very possible method of collecting this data however, in practicality, it does not work as a business model.
Oh and btw, I forgot to mention in my prior post... when I originally pulled my location the time I was pinpointed "precisely" on the map I was connecting to a router from my desktop over an ethernet connection. I don't have a WiFi card on my desktop.
So if that "nearby WiFi networks" theory was true... then I shouldn't have been able to pinpoint my location with such precision.
I'll call my ISP, SKyrim, and ask them as to whether they share their network topology to enable geolocation on their networks.
I know you can look up IP address to get approximate location, but it's not always accurate. Perhaps they're using that?
update:
Typically, your browser uses
information about the Wi-Fi access
points around you to estimate your
location. If no Wi-Fi access points
are in range, or your computer doesn't
have Wi-Fi, it may resort to using
your computer's IP address to get an
approximate location.
It is possible get your approximate locate based on your IP address (wireless or fixed).
See for example hostip.info or maxmind which basically provide a mapping from IP address to geographical coordinates. The probably use many kinds of heuristics and datasources. This kind of system has probably enough accuracy to put you in right major city, in most cases.
Google probably uses somewhat similar approach in addition to WiFi tricks.
So Google keep records of Wifi router location by using any cellphone
GPS that connected to that router when you use Google maps or
location on cellphone. then google knows every device that connected
to that Wifi router uses the same location.
when GPS off or no cellphone connected to router Google uses IP
geolocation