F# how to handle nullable types - f#

I try to do some graphs in F#. As an input I have CSV file that has some values nullable (e.g. nullable int). I try to show chart with following code :
[for row in data.Rows -> row.A.Value, row.B.Value] |> Chart.Point
Where both A and B are nullable integers. I received following error
System.InvalidOperationException: Nullable object must have a value.
How I should handle nullable types. Should I write some Option type to handle it or there is some other good way how to solve it.

If you are using F# 4.0, then there is a built-in function Option.ofNullable. If no, then you can use the implementation in the other answer.
You can also use the same code to define an active pattern:
let (|Present|_|) (n:System.Nullable<_>) =
if n.HasValue then Some(n.Value)
else None
... this can be used inside a match construct and so you can write:
[ for row in data.Rows do
match row.A, row.B wih
| Present a, Present b -> yield a,b
| _ -> () ] |> Chart.Point

Where you are going wrong is: you are calling the Value property on something that might be null.
When you call Value you are effectively saying "It's okay, I have rigorously changed this value and it's definitely not null so it's perfectly safe to treat it as if it were a non-nullable value." Of course, in this case, that condition isn't met, hence the runtime exception.
In F#, you don't want to be working with Nullable<'T> types, you want to be working with Option<'T>, this is much safer and the compiler can check more effectively that you're not making a mistake.
You can convert from Nullable<'T> to Option<'T> for the list using
[for row in data.Rows -> Option.ofNullable (row.A), Option.ofNullable(row.B)]
Of course then you have to decide how you want to handle the None cases but it's much easier to do that once you've made your design explicitly tell you that you've got a value that may or may not be something.
I don't know what behaviour you want but, as an example, perhaps you want to only chart the cases where both values are valid?
You could zip two option values:
module Option =
let zip a b =
match (a,b) with
|Some sa, Some sb -> Some(sa, sb)
|_ -> None
You can then map back to plotable numbers, extracting the None cases using List.choose.
[for row in data.Rows -> Option.ofNullable (row.A), Option.ofNullable (row.B)]
|> List.choose (fun (a,b) -> Option.zip a b)
|> Chart.Point

Map the Nullable type to Option type and filter them out (with .filter or .choose) or transform the None's to a special value for missing values (e.g. 0, -1, NaN) depending on your data to make them working in the charting tool.
module Option =
let fromNullable (n: _ Nullable) =
if n.HasValue
then Some n.Value
else None

Related

Hashtable in F#

Is there an alternative to System.Collections.Generic.Dictionary or System.Collections.Hashtable?
I'm unhappy with the former because it returns value using byref, i.e., I need to do the annoying
let x = ref ""
if hashtable.TryGetValue (key, x) then
// Found, value in !x
else
// Not found.
I'm unhappy with the latter because it's not generic.
EDIT. I'd prefer something generic syntactically looking like Map.tryFind, i.e.,
match Hashtable.tryFind k hashtable with
| None -> ... // Not found
| Some v -> ... // Found v.
Out parameters are part of living with the .NET framework. F# does minimize the pain, however, by automatically tuplizing them along with the return value. So, using Dictionary<_,_> you can do:
match d.TryGetValue(key) with
| true, x -> ... //tuple of return value and out parameter
| _ -> ...
See Passing by Reference on MSDN.
You could easily wrap that into an extension:
type System.Collections.Generic.Dictionary<'K, 'V> with
member x.TryFind(key) =
match x.TryGetValue(key) with
| true, v -> Some v
| _ -> None
There are two collection types in F# you should look at:
Collections.Set<'T> Class (F#)
Immutable sets based on binary trees, where comparison is the F#
structural comparison function, potentially using implementations of
the IComparable interface on key values.
Collections.Map<'Key,'Value> Class (F#)
Immutable maps. Keys are ordered by F# generic comparison.
Map has a function you're looking for:
Map.TryFind
Lookup an element in the map, returning a Some value if the element
is in the domain of the map and None if not.

what is use cases of F# explicit type parameters?

As I know, explicit type parameters in value definitions is a one way to overcome "value restriction" problem.
Is there another cases when I need to use them?
Upd: I mean "explicitly generic constructs", where type parameter is enclosed in angle brackets, i.e.
let f<'T> x = x
Polymorphic recursion is another case. That is, if you want to use a different generic instantiation within the function body, then you need to use explicit parameters on the definition:
// perfectly balanced tree
type 'a PerfectTree =
| Single of 'a
| Node of ('a*'a) PerfectTree
// need type parameters here
let rec fold<'a,'b> (f:'a -> 'b) (g:'b->'b->'b) : 'a PerfectTree -> 'b = function
| Single a -> f a
| Node t -> t |> fold (fun (a,b) -> g (f a) (f b)) g
let sum = fold id (+)
let ten = sum (Node(Node(Single((1,2),(3,4)))))
This would likely be rare, but when you want to prevent further generalization (§14.6.7):
Explicit type parameter definitions on value and member definitions can affect the process of type inference and generalization. In particular, a declaration that includes explicit generic parameters will not be generalized beyond those generic parameters. For example, consider this function:
let f<'T> (x : 'T) y = x
During type inference, this will result in a function of the following type, where '_b is a type inference variable that is yet to be resolved.
f<'T> : 'T -> '_b -> '_b
To permit generalization at these definitions, either remove the explicit generic parameters (if they can be inferred), or use the required number of parameters, as the following example shows:
let throw<'T,'U> (x:'T) (y:'U) = x
Of course, you could also accomplish this with type annotations.
Most obvious example: write a function to calculate the length of a string.
You have to write:
let f (a:string) = a.Length
and you need the annotation. Without the annotation, the compiler can't determine the type of a. Other similar examples exist - particularly when using libraries designed to be used from C#.
Dealing with updated answer:
The same problem applies - string becomes A<string> which has a method get that returns a string
let f (a:A<string>) = a.get().Length

Playing with F# types and getting lost

I have been doing a little reading on F# and decided to give it a try. I started with a somewhat involved example and I came up with and got lost immediately. I wonder if someone can share some thoughts on it.
I wanted to write a method called ComparisonStrategy<'T> that returns an instance of IEqualityComparer<'T>. It that takes in a variable length of ComparisonWhichAndHow<'T> instances. The type ComparisonWhichAndHow<'T> can either be:
One function of type ('T -> *), which is a method that selects a single field to compare
a 2-tuple of ('T -> 'U, IEqualityComparer<'U>) if you don't want the default Equals or GetHashCode to be used on 'U.
I have tried to draw this down on visual studio for a while now, but I can't even get the function declaration part right. I am somewhat positive I would be able to implement the method body if I can just get past this, but seems like I can't.
Edited:
This is the code I have tried so far.
I am trying to achieve the 2 following things.
Come up with a generic way of generating a equal method for each object.
Sometimes some business operations might require comparing some fields of 2 objects, and some fields of their children. Not a full comparison. I am trying to make writing those code more concise and simple
This is what I have so far:
module Failed =
open System.Collections.Generic
open System
type ComparsionOption<'T, 'U> =
| Compare of ('T -> 'U)
| CompareWith of ('T -> 'U) * IEqualityComparer<'U>
// TO USE: [<ParamArray>]
// TODO: this method returns a dummy for now
let CompareStrategy (opts : ComparsionOption<'T, _> array) =
EqualityComparer<'T>.Default
// How it's used
type Person(name : string, id : Guid) =
member this.Name = name
member this.ID = id
let fullCompare : EqualityComparer<Person> =
CompareStrategy [|Compare(fun (p : Person) -> p.Name);
CompareWith((fun (p : Person) -> p.ID), EqualityComparer<Guid>.Default)|] // error here
Looking at the problem from another perspective, it looks like you want to be able to construct objects that perform comparison in two different ways (which you specified) and then compose them.
Let's start by looking at the two ways to build an object that performs comparison. You can represent both by IEqualityComparer<'T>. The first one takes a function 'T -> Something and performs comparison on the result. You can define a function like this:
/// Creates a comparer for 'T values based on a predicate that
/// selects some value 'U from any 'T value (e.g. a field)
let standardComparer (f:'T -> 'U) =
{ new IEqualityComparer<'T> with
member x.Equals(a, b) =
(f a).Equals(b) // Call 'f' on the value & test equality of results
member x.GetHashCode(a) =
(f a).GetHashCode() } // Call 'f' and get hash code of the result
The function is 'T -> 'U using F# generics, so you can project fields of any type (the type just has to be comparable). The second primitive function also takes 'T -> 'U, but it also takes a comparer for 'U values instead of using the default:
/// Creates a comparer for 'T values based on a predicate & comparer
let equalityComparer (f:'T -> 'U) (comparer:IEqualityComparer<'U>) =
{ new IEqualityComparer<'T> with
member x.Equals(a, b) =
comparer.Equals(f a, f b) // Project values using 'f' and use 'comparer'
member x.GetHashCode(a) =
comparer.GetHashCode(f a) } // Similar - use 'f' and 'comparer'
Now you're saying that you'd like to take a sequence of values created in one of the two above ways to build a single comparison strategy. I'm not entirely sure what you mean by that. Do you want two objects to be equal when all the specified comparers report them as equal?
Assuming that is the case, you can write a function that combines two IEqualityComparer<'T> values and reports them as equal when both comparers report them as equal like this:
/// Creates a new IEqualityComparer that is based on two other comparers
/// Two objects are equal if they are equal using both comparers.
let combineComparers (comp1:IEqualityComparer<'T>) (comp2:IEqualityComparer<'T>) =
{ new IEqualityComparer<'T> with
member x.Equals(a, b) =
comp1.Equals(a, b) && comp2.Equals(a, b) // Combine results using &&
member x.GetHashCode(a) =
// Get hash code of a tuple composed by two hash codes
hash (comp1.GetHashCode(a), comp2.GetHashCode(a)) }
This is essenitally implementing all the functionality that you need. If you have some object Person, you can construct comparer like this:
// Create a list of primitive comparers that compare
// Name, Age and ID using special 'idComparer'
let comparers =
[ standardComparer (fun (p:Person) -> p.Name);
standardComparer (fun (p:Person) -> p.Age);
equalityComparer (fun (p:Person) -> p.ID) idComparer ]
// Create a single comparer that combines all of them...
let comparePerson = comparers |> Seq.reduce combineComparers
You could wrap this in a more object-oriented interface using overloaded methods etc., but I think that the above sample shows all the important components that you'll need in the solution.
BTW: In the example, I was using F# object expressions to implement all the functions.

Optionally taking the first item in a sequence

I need a function like Seq.head, but returning None instead of throwing an exception when the sequence is empty, i.e., seq<'T> -> 'T option.
There are a jillion ways to do this. Here are several:
let items = Seq.init 10 id
let a = Seq.tryFind (fun _ -> true) items
let b = Seq.tryPick Some items
let c = if Seq.isEmpty items then None else Some (Seq.head items)
let d =
use e = items.GetEnumerator()
if e.MoveNext() then Some e.Current
else None
b is the one I use. Two questions:
Is there a particularly idiomatic way to do this?
Since there's no built-in Seq.tryHead function, does that indicate this shouldn't be necessary, is uncommon, or is better implemented without a function?
UPDATE
tryHead has been added to the standard library in F# 4.0.
I think (b) is probably the most idiomatic, for the same reason #Ramon gave.
I think the lack of Seq.tryHead just means that it is not super common.
I'm not sure, but my guess is that functional languages with Hindley-Milner type inference in general are sparse about implementing such specific functions on collection types because overloading isn't available and composing higher-order functions can be done tersely.
For example, C# Linq extensions are much more exhaustive than functions in F#'s Seq module (which itself is more exhaustive than functions on concrete collection types), and even has IEnumerable.FirstOrDefault. Practically every overload has a variation which performs a map.
I think emphasis on pattern matching and concrete types like list is also a reason.
Now, most of the above is speculation, but I think I may have a notion closer to being objective. I think a lot of the time tryPick and tryFind can be used in the first place instead of filter |> tryHead. For example, I find myself writing code like the following fairly frequently:
open System.Reflection
let ty = typeof<System.String> //suppose this type is actually unknown at compile time
seq {
for name in ["a";"b";"c"] do
yield ty.GetMethod(name)
} |> Seq.tryFind((<>)null)
instead of like
...
seq {
for name in ["a";"b";"c"] do
match ty.GetMethod(name) with
| null -> ()
| mi -> yield mi
} |> tryHead
You could define:
let seqTryHead s = Seq.tryPick Some s
It is of type seq<'a> -> 'a option. Note that I don't beta-reduce because of the generic value limitation.

Using a variable in pattern matching in Ocaml or F#

I have a function of the form
'a -> ('a * int) list -> int
let rec getValue identifier bindings =
match bindings with
| (identifier, value)::tail -> value
| (_, _)::tail -> getValue identifier tail
| [] -> -1
I can tell that identifier is not being bound the way I would like it to and is acting as a new variable within the match expression. How to I get identifier to be what is passed into the function?
Ok! I fixed it with a pattern guard, i.e. | (i, value)::tail when i = indentifier -> value
but I find this ugly compared to the way I originally wanted to do it (I'm only using these languages because they are pretty...). Any thoughts?
You can use F# active patterns to create a pattern that will do exactly what you need. F# supports parameterized active patterns that take the value that you're matching, but also take an additional parameter.
Here is a pretty stupid example that fails when the value is zero and otherwise succeeds and returns the addition of the value and the specified parameter:
let (|Test|_|) arg value =
if value = 0 then None else Some(value + arg)
You can specify the parameter in pattern matching like this:
match 1 with
| Test 100 res -> res // 'res' will be 101
Now, we can easily define an active pattern that will compare the matched value with the input argument of the active pattern. The active pattern returns unit option, which means that it doesn't bind any new value (in the example above, it returned some value that we assigned to a symbol res):
let (|Equals|_|) arg x =
if (arg = x) then Some() else None
let foo x y =
match x with
| Equals y -> "equal"
| _ -> "not equal"
You can use this as a nested pattern, so you should be able to rewrite your example using the Equals active pattern.
One of the beauties of functional languages is higher order functions. Using those functions we take the recursion out and just focus on what you really want to do. Which is to get the value of the first tuple that matches your identifier otherwise return -1:
let getValue identifier list =
match List.tryFind (fun (x,y) -> x = identifier) list with
| None -> -1
| Some(x,y) -> y
//val getValue : 'a -> (('a * int) list -> int) when 'a : equality
This paper by Graham Hutton is a great introduction to what you can do with higher order functions.
This is not directly an answer to the question: how to pattern-match the value of a variable. But it's not completely unrelated either.
If you want to see how powerful pattern-matching could be in a ML-like language similar to F# or OCaml, take a look at Moca.
You can also take a look at the code generated by Moca :) (not that there's anything wrong with the compiler doing a lot of things for you in your back. In some cases, it's desirable, even, but many programmers like to feel they know what the operations they are writing will cost).
What you're trying to do is called an equality pattern, and it's not provided by Objective Caml. Objective Caml's patterns are static and purely structural. That is, whether a value matches the pattern depends solely on the value's structure, and in a way that is determined at compile time. For example, (_, _)::tail is a pattern that matches any non-empty list whose head is a pair. (identifier, value)::tail matches exactly the same values; the only difference is that the latter binds two more names identifier and value.
Although some languages have equality patterns, there are non-trivial practical considerations that make them troublesome. Which equality? Physical equality (== in Ocaml), structural equality (= in Ocaml), or some type-dependent custom equality? Furthermore, in Ocaml, there is a clear syntactic indication of which names are binders and which names are reference to previously bound values: any lowercase identifier in a pattern is a binder. These two reasons explain why Ocaml does not have equality patterns baked in. The idiomatic way to express an equality pattern in Ocaml is in a guard. That way, it's immediately clear that the matching is not structural, that identifier is not bound by this pattern matching, and which equality is in use. As for ugly, that's in the eye of the beholder — as a habitual Ocaml programmer, I find equality patterns ugly (for the reasons above).
match bindings with
| (id, value)::tail when id = identifier -> value
| (_, _)::tail -> getValue identifier tail
| [] -> -1
In F#, you have another possibility: active patterns, which let you pre-define guards that concern a single site in a pattern.
This is a common complaint, but I don't think that there's a good workaround in general; a pattern guard is usually the best compromise. In certain specific cases there are alternatives, though, such as marking literals with the [<Literal>] attribute in F# so that they can be matched against.

Resources