Data model and traversal approach for bus routing in neo4j - neo4j

I'm trying to create an application to find the best paths to use when traveling by bus within my local city. I have found some useful answers on here so far, but I'm currently struggeling with my approach in general and I'd like to get some feedback.
Current data model
There are stations and stages modeled as nodes and two relationships between stations and stops. Each stage node has a start and an end time as a string in "HH:mm" format and belongs to some higher-level structure which I call routes, that are connected to these stage nodes to describe a trajectory along stations with time details. Each :FROM relationship has a property duration to model the travel time for reduce statements.
So the following query would return something like this. The stage nodes show the start property in the picture.
match (from:Station {name: "Glosberg"})
match (to:Station {name: "Knellendorf"})
match paths=((from)-[:FROM|:TO*..10]->(to))
return paths;
Problems so far:
ShortestPath/AllShortestPaths is not a valid option as smallest number of hops does not mean best path. What I want is a reduction of travel duration, which I can achive with a Reduce statement, which I have already done. Since I have to check out all paths I'm using the general pattern matcher with a limit (as seen above). The limit I use in my queries is actually the length of the shortest paths between from and to plus 10% or so to also include paths that might consist of more hops but take less time. This is not necessarily accurate but seems like a fair trade-off.
Using dijkstra gives me all paths from A to B. Since stage nodes have a form of time data on them, most of the paths do not make sense, because they are either combined in reversed order (2pm -> 1pm) or produce long waiting times (2pm -> 4pm), which are not necessary. Therefore I have to filter out bad paths, either in cypher or at some api level. However, with the current data model there simply are too many paths to check for validity. With some sample data, which would also run in production, I have a route that visits 24 stations 2 times a day, resulting in 2^23 paths to take. I'm pretty sure that my data model is the problem, but I can't see any ways to solve this; any ideas?
Questions:
More of a side problem: How would you solve ordering paths with stages that go past 0am? As "23:59" is bigger than "00:01" but not chronologically.
What would you change about the data model?
Would you suggest any trade-offs in how the path finding works to reduce the complexity (eg. simply using shortestpath)?
Would you suggest seperating the actual route data (timetable, who stops where and when) from the infrastructure data (stations and which stations are close to which)? That way I'd have to and use neo4j to find a path/set of stations to travel along and then try to find a suiting set of elements from a timetable, similiar to wanderu's approach.
I've read that the traversal api is a better way to describe how the graph should be accessed instead of using cypher, which only describes what to look for, but I'd like to receive feedback on my thoughs until now before I dive into that.

Related

Neo4J using properties on relationships for quicker lookup?

I am yet trying to make use of neo4j to perform a complex query (similar to shortest path search except I have very strange conditions applied to this search like minimum path length in terms of nodes traversed count).
My dataset contains around 2.5M nodes of one single type and around 1.5 billion edges (One single type as well). Each given node has on average 1000 directional relation to a "next" node.
Yet, I have a query that allows me to retrieve this shortest path given all of my conditions but the only way I found to have decent response time (under one second) is to actually limit the number of results after each new node added to the path, filter it, order it and then pursue to the next node (This is kind of a greedy algorithm I suppose).
I'd like to limit them a lot less than I do in order to yield more path as a result, but the problem is the exponential complexity of this search that makes going from LIMIT 40 to LIMIT 60 usually a matter of x10 ~ x100 processing time.
This being said, I am yet evaluating several solutions to increase the speed of the request but I'm quite unsure of the result they will yield as I'm not sure about how neo4j really stores my data internally.
The solution I think about yet is to actually add a property to my relationships which would be an integer in between 1 and 15 because I usually will only query the relationships that have one or two max different values for this property. (like only relationships that have this property to 8 or 9 for example).
As I can guess yet, for each relationship, neo4j then have to gather the original node properties and use it to apply my further filters which takes a very long time when crossing 4 nodes long path with 1000 relationships each (I guess O(1000^4)). Am I right ?
With relationship properties, will it have direct access to it without further data fetching ? Is there any chance it will make my queries faster? How are neo4j edges properties stored ?
UPDATE
Following #logisima 's advice I've written a procedure directly with the Java traversal API of neo4j. I then switched to the raw Java procedure API of Neo4J to leverage even more power and flexibility as my use case required it.
The results are really good : the lower bound complexity is overall a little less thant it was before but the higher bound is like ten time faster and when at least some of the nodes that will be used for the traversal are in the cache of Neo4j, the performances just becomes astonishing (depth 20 in less than a second for one of my tests when I only need depth 4 usually).
But that's not all. The procedures makes it very very easily customisable while keeping the performances at their best and optimizing every single operation at its best. The results is that I can use far more powerful filters in far less computing time and can easily update my procedure to add new features. Last but not least Procedures are very easily pluggable with spring-data for neo4j (which I use to connect neo4j to my HTTP API). Where as with cypher, I would have to auto generate the queries (as being very complex, there was like 30 java classes to do the trick properly) and I should have used jdbc for neo4j while handling a separate connection pool only for this request. Cannot recommend more to use the awesome neo4j java API.
Thanks again #logisima
If you're trying to do a custom shortespath algo, then you should write a cypher procedure with the traversal API.
The principe of Cypher is to make pattern matching, and you want to traverse the graph in a specific way to find your good solution.
The response time should be really faster for your use-case !

Cypher: Find any path between nodes

I have a neo4j graph that looks like this:
Nodes:
Blue Nodes: Account
Red Nodes: PhoneNumber
Green Nodes: Email
Graph design:
(:PhoneNumber) -[:PART_OF]->(:Account)
(:Email) -[:PART_OF]->(:Account)
The problem I am trying to solve is to
Find any path that exists between Account1 and Account2.
This is what I have tried so far with no success:
MATCH p=shortestPath((a1:Account {accId:'1234'})-[]-(a2:Account {accId:'5678'})) RETURN p;
MATCH p=shortestPath((a1:Account {accId:'1234'})-[:PART_OF]-(a2:Account {accId:'5678'})) RETURN p;
MATCH p=shortestPath((a1:Account {accId:'1234'})-[*]-(a2:Account {accId:'5678'})) RETURN p;
MATCH p=(a1:Account {accId:'1234'})<-[:PART_OF*1..100]-(n)-[:PART_OF]->(a2:Account {accId:'5678'}) RETURN p;
Same queries as above without the shortest path function call.
By looking at the graph I can see there is a path between these 2 nodes but none of my queries yield any result. I am sure this is a very simple query but being new to Cypher, I am having a hard time figuring out the right solution. Any help is appreciated.
Thanks.
All those queries are along the right lines, but need some tweaking to make work. In the longer term, though, to get a better system to easily search for connections between accounts, you'll probably want to refactor your graph.
Solution for Now: Making Your Query Work
The path between any two (n:Account) nodes in your graph is going to look something like this:
(a1:Account)<-[:PART_OF]-(:Email)-[:PART_OF]->(ai:Account)<-[:PART_OF]-(:PhoneNumber)-[:PART_OF]->(a2:Account)
Since you have only one type of relationship in your graph, the two nodes will thus be connected by an indeterminate number of patterns like the following:
<-[:PART_OF]-(:Email)-[:PART_OF]->
or
<-[:PART_OF]-(:PhoneNumber)-[:PART_OF]->
So, your two nodes will be connected through an indeterminate number of intermediate (:Account), (:Email), or (:PhoneNumber) nodes all connected by -[:PART_OF]- relationships of alternating direction. Unfortunately to my knowledge (and I'd love to be corrected here), using straight cypher you can't search for a repeated pattern like this in your current graph. So, you'll simply have to use an undirected search, to find nodes (a1:Account) and(a2:Account) connected through -[:PART_OF]- relationships. So, at first glance your query would look like this:
MATCH p=shortestPath((a1:Account { accId: {a1_id} })-[:PART_OF*]-(a2:Account { accId: {a2_id} }))
RETURN *
(notice here I've used cypher parameters rather than the integers you put in the original post)
That's very similar to your query #3, but, like you said - it doesn't work. I'm guessing what happens is that it doesn't return a result, or returns an out of memory exception? The problem is that since your graph has circular paths in it, and that query will match a path of any length, the matching algorithm will literally go around in circles until it runs out of memory. So, you want to set a limit, like you have in query #4, but without the directions (which is why that query doesn't work).
So, let's set a limit. Your limit of 100 relationships is a little on the large side, especially in a cyclical graph (i.e., one with circles), and could potentially match in the region of 2^100 paths.
As a (very arbitrary) rule of thumb, any query with a potential undirected and unlabelled path length of more than 5 or 6 may begin to cause problems unless you're very careful with your graph design. In your example, it looks like these two nodes are connected via a path length of 8. We also know that for any two nodes, the given minimum path length will be two (i.e., two -[:PART_OF]- relationships, one into and one out of a node labelled either :Email or :PhoneNumber), and that any two accounts, if linked, will be linked via an even number of relationships.
So, ideally we'd set out our relationship length between 2 and 10. However, cypher's shortestPath() function only supports paths with a minimum length of either 0 or 1, so I've set it between 1 and 10 in the example below (even though we know that in reality, the shortest path have a length of at least two).
MATCH p=shortestPath((a1:Account { accId: {a1_id} })-[:PART_OF*1..10]-(a2:Account { accId: {a2_id} }))
RETURN *
Hopefully, this will work with your use case, but remember, it may still be very memory intensive to run on a large graph.
Longer Term Solution: Refactor Graph and/or Use APOC
Depending on your use case, a better or longer term solution would be to refactor your graph to be more specific about relationships to speed up query times when you want to find accounts linked only by email or phone number - i.e. -[:ACCOUNT_HAS_EMAIL]- and -[:ACCOUNT_HAS_PHONE]-. You may then also want to use APOC's shortest path algorithms or path finder functions, which will most likely return a faster result than using cypher, and allow you to be more specific about relationship types as your graph expands to take in more data.

Fuzzy neo4j relationships

I want to do something in neo4j that I hope will work ok: I want to make "fuzzy" path matches; the links will sometimes count as a relationship, and sometimes not, depending on the query.
Here's an example: let's say I have a (p:Person)-[:HAS]->(n:Name). A search has found a Person (say, by phone number). I want to go from this Person to other Persons with similar names, to get their phone numbers. Also, I want the similarity to be adjustable, so the user might ask to match very similar names, or not very similar names.
I could get the first person's name, and then do a search against other names with some lucene patterns - this is easy enough, but it means doing a full lucene search on the Name values, which in my use case is not ideal as I think it might be a bit slow (there are very many names - let's say a billion, remembering this is just an example). I hope there is a better way.
One approach I can imagine is having a "similarity" relationship between Names. Whenever a new Name node is added, we check for similar names and link them (creating these relationships would be slow, but we could push it onto a batch process, and it's ok if it takes some minutes). We would only link names that were fairly similar (so the number of links would hopefully not get too large). I suppose we could then craft a query on this, matching similarities greater than my threshold. Something like this:
MATCH (p1:Person {phone:"555-234234"})-->(n1:Name)-[s:SIMILAR]->(n2:Name)-->(p2:Person)
WHERE s.matchLevel >=2
RETURN p2.phone;
Is this approach better or worse than just doing the lucene search? Has anyone else wanted to do something like this?
Also, based on the suggestion at http://graphaware.com/neo4j/2013/10/24/neo4j-qualifying-relationships.html, I believe I'll be better off having many relationships (SIMILAR_1, SIMILAR_2 ..) instead of using a "match level" attribute on my relationship.
BTW, I know there are many similar questions to this (eg. Neo4j 2 Cypher fuzzy search), but afaik this exact question isn't on stackoverflow (and I have looked).

How much does the architecture of data affect the speed of a query

I have the following nodes and relationships in Neo4j database.
The grey and the pink node are furtherly connected with more nodes. Running the following query:
MATCH (n:RealNode {gid:'$obj_id'})-[:CONTAINS*..3]-(z)
RETURN DISTINCT ID(z), z.id,n.id as InternalID"
I get a result very fast (the node n:RealNode is not one of the nodes in the image).
If I increase the depth to 4 like:
MATCH (n:RealNode {gid:'$obj_id'})-[:CONTAINS*..4]-(z)
RETURN DISTINCT ID(z), z.id,n.id as InternalID"
The response gets extremely slow. I will never get a response with depth 5 etc.
The depth 4 is actually the relationship between the blue-pink node. So my question is: can the architecture of data (in this case) affect in such a great level the speed of the query? If yes what should I do?
I have tried to run the query also using parameters but the result was the same. Also the gid of n:RealNode is an indexed value.
The architecture of your data has a huge, no...massive impact on query performance. There's a lot you can do with improving performance by reformulating your query, but you can do even more than that by changing your data model.
The model needs to be chosen in a way that's an accurate depiction of the real-world domain, but it often also has to make certain concessions to usage patterns. If you know you're going to do certain queries over and over, it makes sense to choose a data model that makes it easy for the DBMS to answer that query. In the RDBMS world, that entire line of thinking gets summarized in the word "denormalization". In graph databases, the concept is the same but the way you go about it is different.
The thing to keep in mind when adjusting your data model is that neo4j is good at traversing relationships fast, and that with all queries, the less data you have to consider, the faster the query will go.
So in your case, I don't know how many nodes branch off of each other node by a :CONTAINS relationship, but I'm guessing that at each level of the hierarchy you have many items below it. So going from level 4 to level 5 probably doesn't just add a fixed number of additional nodes, but if say each level of the hierarchy has 3x the number of nodes as the level above, the deeper you go, the more you're multiplying how much data you have to consider. If it's 10x...then ouch.
You have many different options. One is to create short-cut relationships, and "pre-materialize" the query. Imagine creating :grandfather and :greatgrandfather relationships to "hop" levels of the tree. That would make it faster. Another way would be to filter intermediate nodes, or the return nodes, so that you're not considering everything, but some subset.
In the end, really huge queries will always take longer than really small ones. You must first begin with a careful understanding of what data you want, and how often you have to run this query. I would not attempt to optimize your data model for infrequently run queries, but if you do this all the time, you should look at your options. Your query to me looks like it's going to return a whole lot of data no matter what you do.

Querying temporal data in Neo4j

There are several possible ways I can think of to store and then query temporal data in Neo4j. Looking at an example of being able to search for recurring events and any exceptions, I can see two possibilities:
One easy option would be to create a node for each occurrence of the event. Whilst easy to construct a cypher query to find all events on a day, in a range, etc, this could create a lot of unnecessary nodes. It would also make it very easy to change individual events times, locations etc, because there is already a node with the basic information.
The second option is to store the recurrence temporal pattern as a property of the event node. This would greatly reduce the number of nodes within the graph. When searching for events on a specific date or within a range, all nodes that meet the start/end date (plus any other) criteria could be returned to the client. It then boils down to iterating through the results to pluck out the subset who's temporal pattern gives a date within the search range, then comparing that to any exceptions and merging (or ignoring) the results as necessary (this could probably be partially achieved when pulling the initial result set as part of the query).
Whilst the second option is the one I would choose currently, it seems quite inefficient in that it processes the data twice, albeit a smaller subset the second time. Even a plugin to Neo4j would probably result in two passes through the data, but the processing would be done on the database server rather than the requesting client.
What I would like to know is whether it is possible to use Cypher or Neo4j to do this processing as part of the initial query?
Whilst I'm not 100% sure I understand you requirement, I'd have a look at this blog post, perhaps you'll find a bit of inspiration there: http://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html

Resources