In Kotlin, what is the idiomatic way to deal with nullable values, referencing or converting them - nullable

If I have a nullable type Xyz?, I want to reference it or convert it to a non-nullable type Xyz. What is the idiomatic way of doing so in Kotlin?
For example, this code is in error:
val something: Xyz? = createPossiblyNullXyz()
something.foo() // Error: "Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable receiver of type Xyz?"
But if I check null first it is allowed, why?
val something: Xyz? = createPossiblyNullXyz()
if (something != null) {
something.foo()
}
How do I change or treat a value as not null without requiring the if check, assuming I know for sure it is truly never null? For example, here I am retrieving a value from a map that I can guarantee exists and the result of get() is not null. But I have an error:
val map = mapOf("a" to 65,"b" to 66,"c" to 67)
val something = map.get("a")
something.toLong() // Error: "Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable receiver of type Int?"
The method get() thinks it is possible that the item is missing and returns type Int?. Therefore, what is the best way to force the type of the value to be not nullable?
Note: this question is intentionally written and answered by the author (Self-Answered Questions), so that the idiomatic answers to commonly asked Kotlin topics are present in SO. Also to clarify some really old answers written for alphas of Kotlin that are not accurate for current-day Kotlin.

First, you should read all about Null Safety in Kotlin which covers the cases thoroughly.
In Kotlin, you cannot access a nullable value without being sure it is not null (Checking for null in conditions), or asserting that it is surely not null using the !! sure operator, accessing it with a ?. Safe Call, or lastly giving something that is possibly null a default value using the ?: Elvis Operator.
For your 1st case in your question you have options depending on the intent of the code you would use one of these, and all are idiomatic but have different results:
val something: Xyz? = createPossiblyNullXyz()
// access it as non-null asserting that with a sure call
val result1 = something!!.foo()
// access it only if it is not null using safe operator,
// returning null otherwise
val result2 = something?.foo()
// access it only if it is not null using safe operator,
// otherwise a default value using the elvis operator
val result3 = something?.foo() ?: differentValue
// null check it with `if` expression and then use the value,
// similar to result3 but for more complex cases harder to do in one expression
val result4 = if (something != null) {
something.foo()
} else {
...
differentValue
}
// null check it with `if` statement doing a different action
if (something != null) {
something.foo()
} else {
someOtherAction()
}
For the "Why does it work when null checked" read the background information below on smart casts.
For your 2nd case in your question in the question with Map, if you as a developer are sure of the result never being null, use !! sure operator as an assertion:
val map = mapOf("a" to 65,"b" to 66,"c" to 67)
val something = map.get("a")!!
something.toLong() // now valid
or in another case, when the map COULD return a null but you can provide a default value, then Map itself has a getOrElse method:
val map = mapOf("a" to 65,"b" to 66,"c" to 67)
val something = map.getOrElse("z") { 0 } // provide default value in lambda
something.toLong() // now valid
Background Information:
Note: in the examples below I am using explicit types to make the behavior clear. With type inference, normally the types can be omitted for local variables and private members.
More about the !! sure operator
The !! operator asserts that the value is not null or throws an NPE. This should be used in cases where the developer is guaranteeing that the value will never be null. Think of it as an assert followed by a smart cast.
val possibleXyz: Xyz? = ...
// assert it is not null, but if it is throw an exception:
val surelyXyz: Xyz = possibleXyz!!
// same thing but access members after the assertion is made:
possibleXyz!!.foo()
read more: !! Sure Operator
More about null Checking and Smart Casts
If you protect access to a nullable type with a null check, the compiler will smart cast the value within the body of the statement to be non-nullable. There are some complicated flows where this cannot happen, but for common cases works fine.
val possibleXyz: Xyz? = ...
if (possibleXyz != null) {
// allowed to reference members:
possiblyXyz.foo()
// or also assign as non-nullable type:
val surelyXyz: Xyz = possibleXyz
}
Or if you do a is check for a non-nullable type:
if (possibleXyz is Xyz) {
// allowed to reference members:
possiblyXyz.foo()
}
And the same for 'when' expressions that also safe cast:
when (possibleXyz) {
null -> doSomething()
else -> possibleXyz.foo()
}
// or
when (possibleXyz) {
is Xyz -> possibleXyz.foo()
is Alpha -> possibleXyz.dominate()
is Fish -> possibleXyz.swim()
}
Some things do not allow the null check to smart cast for the later use of the variable. The example above uses a local variable that in no way could have mutated in the flow of the application, whether val or var this variable had no opportunity to mutate into a null. But, in other cases where the compiler cannot guarantee the flow analysis, this would be an error:
var nullableInt: Int? = ...
public fun foo() {
if (nullableInt != null) {
// Error: "Smart cast to 'kotlin.Int' is impossible, because 'nullableInt' is a mutable property that could have been changed by this time"
val nonNullableInt: Int = nullableInt
}
}
The lifecycle of the variable nullableInt is not completely visible and may be assigned from other threads, the null check cannot be smart cast into a non-nullable value. See the "Safe Calls" topic below for a workaround.
Another case that cannot be trusted by a smart cast to not mutate is a val property on an object that has a custom getter. In this case, the compiler has no visibility into what mutates the value and therefore you will get an error message:
class MyThing {
val possibleXyz: Xyz?
get() { ... }
}
// now when referencing this class...
val thing = MyThing()
if (thing.possibleXyz != null) {
// error: "Kotlin: Smart cast to 'kotlin.Int' is impossible, because 'p.x' is a property that has open or custom getter"
thing.possiblyXyz.foo()
}
read more: Checking for null in conditions
More about the ?. Safe Call operator
The safe call operator returns null if the value to the left is null, otherwise continues to evaluate the expression to the right.
val possibleXyz: Xyz? = makeMeSomethingButMaybeNullable()
// "answer" will be null if any step of the chain is null
val answer = possibleXyz?.foo()?.goo()?.boo()
Another example where you want to iterate a list but only if not null and not empty, again the safe call operator comes in handy:
val things: List? = makeMeAListOrDont()
things?.forEach {
// this loops only if not null (due to safe call) nor empty (0 items loop 0 times):
}
In one of the examples above we had a case where we did an if check but have the chance another thread mutated the value and therefore no smart cast. We can change this sample to use the safe call operator along with the let function to solve this:
var possibleXyz: Xyz? = 1
public fun foo() {
possibleXyz?.let { value ->
// only called if not null, and the value is captured by the lambda
val surelyXyz: Xyz = value
}
}
read more: Safe Calls
More about the ?: Elvis Operator
The Elvis operator allows you to provide an alternative value when an expression to the left of the operator is null:
val surelyXyz: Xyz = makeXyzOrNull() ?: DefaultXyz()
It has some creative uses as well, for example throw an exception when something is null:
val currentUser = session.user ?: throw Http401Error("Unauthorized")
or to return early from a function:
fun foo(key: String): Int {
val startingCode: String = codes.findKey(key) ?: return 0
// ...
return endingValue
}
read more: Elvis Operator
Null Operators with Related Functions
Kotlin stdlib has a series of functions that work really nicely with the operators mentioned above. For example:
// use ?.let() to change a not null value, and ?: to provide a default
val something = possibleNull?.let { it.transform() } ?: defaultSomething
// use ?.apply() to operate further on a value that is not null
possibleNull?.apply {
func1()
func2()
}
// use .takeIf or .takeUnless to turn a value null if it meets a predicate
val something = name.takeIf { it.isNotBlank() } ?: defaultName
val something = name.takeUnless { it.isBlank() } ?: defaultName
Related Topics
In Kotlin, most applications try to avoid null values, but it isn't always possible. And sometimes null makes perfect sense. Some guidelines to think about:
in some cases, it warrants different return types that include the status of the method call and the result if successful. Libraries like Result give you a success or failure result type that can also branch your code. And the Promises library for Kotlin called Kovenant does the same in the form of promises.
for collections as return types always return an empty collection instead of a null, unless you need a third state of "not present". Kotlin has helper functions such as emptyList() or emptySet() to create these empty values.
when using methods which return a nullable value for which you have a default or alternative, use the Elvis operator to provide a default value. In the case of a Map use the getOrElse() which allows a default value to be generated instead of Map method get() which returns a nullable value. Same for getOrPut()
when overriding methods from Java where Kotlin isn't sure about the nullability of the Java code, you can always drop the ? nullability from your override if you are sure what the signature and functionality should be. Therefore your overridden method is more null safe. Same for implementing Java interfaces in Kotlin, change the nullability to be what you know is valid.
look at functions that can help already, such as for String?.isNullOrEmpty() and String?.isNullOrBlank() which can operate on a nullable value safely and do what you expect. In fact, you can add your own extensions to fill in any gaps in the standard library.
assertion functions like checkNotNull() and requireNotNull() in the standard library.
helper functions like filterNotNull() which remove nulls from collections, or listOfNotNull() for returning a zero or single item list from a possibly null value.
there is a Safe (nullable) cast operator as well that allows a cast to non-nullable type return null if not possible. But I do not have a valid use case for this that isn't solved by the other methods mentioned above.

The previous answer is a hard act to follow, but here's one quick and easy way:
val something: Xyz = createPossiblyNullXyz() ?: throw RuntimeError("no it shouldn't be null")
something.foo()
If it really is never null, the exception won't happen, but if it ever is you'll see what went wrong.

I want to add that now it exists Konad library that addresses more complex situations for nullable composition. Here it follows an example usage:
val foo: Int? = 1
val bar: String? = "2"
val baz: Float? = 3.0f
fun useThem(x: Int, y: String, z: Float): Int = x + y.toInt() + z.toInt()
val result: Int? = ::useThem.curry()
.on(foo.maybe)
.on(bar.maybe)
.on(baz.maybe)
.nullable
if you want to keep it nullable, or
val result: Result<Int> = ::useThem.curry()
.on(foo.ifNull("Foo should not be null"))
.on(bar.ifNull("Bar should not be null"))
.on(baz.ifNull("Baz should not be null"))
.result
if you want to accumulate errors. See maybe section

Accepted answer contains the complete detail, here I am adding the summary
How to call functions on a variable of nullable type
val str: String? = "HELLO"
// 1. Safe call (?), makes sure you don't get NPE
val lowerCaseStr = str?.toLowerCase() // same as str == null ? null : str.toLowerCase()
// 2. non-null asserted call (!!), only use if you are sure that value is non-null
val upperCaseStr = str!!.toUpperCase() // same as str.toUpperCase() in java, NPE if str is null
How to convert nullable type variable to non-nullable type
Given that you are 100% sure that nullable variable contains non-null value
// use non-null assertion, will cause NPE if str is null
val nonNullableStr = str!! // type of nonNullableStr is String(non-nullable)
Why safe(?) or non-null(!!) assertion not required inside null check if block
if the compiler can guarantee that the variable won't change between the check and the usage then it knows that variable can't possibly be null, so you can do
if(str != null){
val upperCaseStr = str.toUpperCase() // str can't possibly be null, no need of ? or !!
}

Related

Dapper SetValue on F# Union type not being called

My research on this seems to conclude a bug in dapper, but I'm hoppign I'm missing something simple.
I have a union type
type PrimaryKey<'x> =
| Id of int
| EmptyPrimaryKey
And I want to be able to map that to int columns in SQL.
My custom type handler is below:
type PrimaryKeyHandler<'X>() =
inherit SqlMapper.TypeHandler<PrimaryKey<'X>>()
override _.SetValue(param, value) =
printfn "Running set value"
let valueOrNull =
match value with
| PrimaryKey.Id id ->
box id
| EmptyPrimaryKey ->
null
param.Value <- valueOrNull
override _.Parse value =
if isNull value || value = box DBNull.Value
then EmptyPrimaryKey
else Id (value :?> int)
_.Parse is working correctly when I'm using Select queries, so all good there.
However when I'm trying to Insert a value, .SetValue does not seem to be being called at all and the program is dying with the type cannot be used as a parameter value
And when dumping out the values that's going into the query, it is indeed a PrimaryKey rather than an integer. And no printfn statements or breakpoints are being hit.
This doesn't seem to be a super uncommon problem but I haven't found a clear solution yet.

How can I check if argument is null, and if not use it in a function?

Is there a shorter, more elegant way to do that?
var? x = null == y ? null : foo(y!);
Something like this, maybe?
int? y = null;
double? x = y?.toDouble() ?? null;
(it should be null safe as well)
No.
There is currently no operation in Dart which takes a value, checks if it is non-null, and if so, does something to it other than calling a method on the object.
What you can do, if you want to, is to introduce an extension like
extension CallWith<T> on T {
R pipeTo<R>(R Function(T) f) => f(this);
}
Then you can write:
y?.pipeTo(foo);

Is there a generic Type in Dart like Class<T> in Java/Kotlin?

In Kotlin I can do something like:
var myType : KClass<String>? = null
and can assign to it like:
myType = String::class
but NOT like:
myType = Int::class // Type mismatch: inferred type in KClass<Int> but KClass<String>? was expected
Is there something similar in Dart? I know of the Type type but it is not generic and while it can represent String or List<int> I seem not to be able to write similar code as my Kotlin example:
Type? t = null;
I can assign to it:
t = String;
AND also:
t = int;
but I want the second example to fail compilation. I would need some kind of Type<String>. Is this possible in Dart?
The Type class is not generic, and doesn't support subtype checks (or any other reasonable type-related operation). There is no way to use it for what you are trying to do.
So, don't. It's useless anyway. However, in Dart you can create your own type representation that is actually useful, because Dart doesn't erase type arguments, and you can then ask people using your code to ass that instead.
Say:
class MyType<T> implements Comparable<MyType>{ // Or a better name.
const MyType();
Type get type => T;
bool operator >=(MyType other) => other is MyType<T>;
bool operator <=(MyType other) => other >= this;
bool isInstance(Object? object) => object is T;
R runWith<R>(R Function<T>() action) => action<T>();
#override
int get hashCode => T.hashCode;
#override
bool operator==(Object other) => other is MyType && T == other.type;
}
With that you can write:
MyType<String?> type;
type = MyType<Null>(); // valid
type = MyType<String>(); // valid
type = MyType<Never>(); // valid
type = MyType<int>; // EEEK! compile-time error
You can use it where you need to store a type as a value.
The thing is, most of the time you can just use a type variable instead ,and creating an actual value to represent a type is overkill.
So, first try to just use a type parameter, instead of passing around Type or MyType objects. Only if that fails should you consider using MyType. Using Type is probably a mistake since it's not good for anything except doing == checks, which is antithetical to object orientation's idea of subtype subsumption.
I think this is the best you can get :
void main() {
aFunction<String>(String, '');
aFunction<String>(String, 1);
}
void aFunction<V>(Type type, V value) {
print(value.toString());
}
if you run this in a dartpad, you will see that
aFunction<String>(type, 1);
Doesn't compile.
But that's not really efficient because the type isn't guessed by Dart, you have to specify the generic type by hand.
I'm using Dart 2.17

Dapper column to F# option property

How do I get Dapper to convert data to an F# type with an option property? Simple example:
type SomeType = {
Count : int option
}
connection.QueryAsync<SomeType>(...)
This throws:
System.InvalidOperationException
A parameterless default constructor or one matching signature
(System.Int32 count) is required for SomeType materialization
Using Nullable instead of option works:
type SomeType = {
Count : Nullable<int>
}
But it's not as desirable for various reasons. For one thing, I have cases where I use string option (because F# doesn't allow null assignments normally, which is great), and Nullable<string> doesn't compile. Is there a way to configure/instruct Dapper to automatically deal with option types? I'd like to avoid using custom mappings every time.
In case it matters, using with Npgsql.
I don't think there's any support for adding handlers for open generics, so you'd have to add a type handler for each type you need.
You could define a handler like this:
type OptionHandler<'T>() =
inherit SqlMapper.TypeHandler<option<'T>>()
override __.SetValue(param, value) =
let valueOrNull =
match value with
| Some x -> box x
| None -> null
param.Value <- valueOrNull
override __.Parse value =
if isNull value || value = box DBNull.Value
then None
else Some (value :?> 'T)
And register for the types you need like this:
SqlMapper.AddTypeHandler (OptionHandler<string>())
SqlMapper.AddTypeHandler (OptionHandler<int>())

How do I properly implement a property in F#?

Consider my first attempt, a simple type in F# like the following:
type Test() =
inherit BaseImplementingNotifyPropertyChangedViaOnPropertyChanged()
let mutable prop: string = null
member this.Prop
with public get() = prop
and public set value =
match value with
| _ when value = prop -> ()
| _ ->
let prop = value
this.OnPropertyChanged("Prop")
Now I test this via C# (this object is being exposed to a C# project, so apparent C# semantics are desirable):
[TestMethod]
public void TaskMaster_Test()
{
var target = new FTest();
string propName = null;
target.PropertyChanged += (s, a) => propName = a.PropertyName;
target.Prop = "newString";
Assert.AreEqual("Prop", propName);
Assert.AreEqual("newString", target.Prop);
return;
}
propName is properly assigned, my F# Setter is running, but the second assert is failing because the underlying value of prop isn't changed. This sort of makes sense to me, because if I remove mutable from the prop field, no error is generated (and one should be because I'm trying to mutate the value). I think I must be missing a fundamental concept.
What's the correct way to rebind/mutate prop in the Test class so that I can pass my unit test?
As a side-note, I would probably use if .. then instead of the match construct as it makes the code more succinct (patterh matching is especially valuable when you need to test the value agains multiple complex patterns). Also, public is the default access for member, so you can make the code a bit more succinct:
type Test() =
inherit BaseImplementingNotifyPropertyChangedViaOnPropertyChanged()
let mutable prop : string = null
member this.Prop
with get() = prop
and set(value) =
if value <> prop then
prop <- value
this.OnPropertyChanged("Prop")
Try this:
type Test() =
inherit BaseImplementingNotifyPropertyChangedViaOnPropertyChanged()
let mutable prop: string = null
member this.Prop
with public get() = prop
and public set value =
match value with
| _ when value = prop -> ()
| _ ->
prop <- value
this.OnPropertyChanged("Prop")
You need to make the binding mutable and then alter its value in your setter. In your initial code, you were just creating a new binding (also called prop) within your setter, so no change was visible.
In your pattern match you are actually binding a new value with
let prop = value
When you bind a value like this with the same name, it will shadow the other value for the scope of the newly declared one. I believe what you actually want to do is this:
prop <- value

Resources