Implementing cross-cutting concerns in F# - f#

Does it make sense to leverage Railway-Oriented Programming techniques for cross-cutting concerns of an F# application?
For example, I am preparing for my next kata that requires logging. As I attempt to think functional, I can't help but wonder if the patterns used in Railway-Oriented Programming can also be leveraged for logging function calls.
What I don't want are side-effects within my functions that are a result of managing cross-cutting concerns (i.e. logging, security, etc.).
Is there any guidance available for implementing logging behavior within F#?
Can Aspect-Oriented Programming be considered?

Does it make sense to leverage Railway-Oriented Programming techniques
for cross-cutting concerns of an F# application?
The term Railway-Oriented Programming is one I have not heard of before but Computation Expressions and Continuation-passing style are. Since that is such a broad question the answer is the typical it depends. I gave you the touch points so you will have to make the call.
Can Railway-Oriented Programming (think Computation expressions) be leveraged for logging function calls?
Is there any guidance available for implementing logging behavior within F#?
Sure. See: Computation expressions: Introduction which gives a logging example.
Can Aspect-Oriented Programming be considered?
I have never used AOP so take this with a grain of salt but here is an answer from a what I consider a reliable source:
From AOP with F#
In gen­eral, I don’t feel AOP is as well suited to func­tional pro­gram­ming as it is to object ori­ented pro­gram­ming, but there’s still a pocket of use cases where AOP can be ben­e­fi­cial.
Again this is such a broad question the answer is the typical it depends.
As a person new to F# I would recommend that you concentrate on getting the code to work first. You are pilling on too many requirements that will just get in the way. When I started learning F# I too read too much and tried too many things with some of the best advice I received here being not to use certain things just because I could.

Related

F# and Fuzzy Logic

I know it might sound strange but I would like to know one thing in this new world where Microsoft Visual F# is getting into.
There are many application of this language, I am going to learn, regarding parsing, functional programming, structured programming... But what about artificial intelligence?
Are there any applications for Fuzzy Logic? Is F# a good language to be used for Fuzzy Logic applications?
At university we are studying Prolog and similar languages. Prolog is able to create complex query in a very plain and short expresisons (by taking advantage of predicates and facts). Is F# able to do this?
Thank you in advance.
Fuzzy Logic. F# doesn't provide any types for implementing fuzzy logic calculations out of the box, but it is certainly possible to use F# in this domain. The succinctness of F# and the ability to define custom overloaded operators should make code based on fuzzy logic quite nice. I did a quick search and discovered a few articles implementing fuzzy logic in F#:
Fuzzy Logic in F#, Example 1
FuzzyAdvisor - A Simple Fuzzy Logic Expert System in F#
Prolog is a bit different question. The power (and also the weakness) of Prolog come from the fact that it has backtracking built directly in the language. This makes it very nice for implementing search algorithms based on backtracking, but it also a limitation.
F# doesn't have any direct support for backtracking, but it is quite easy to write algorithms based on backtracking using recursion (which is the main control flow mechanism in both F# and Prolog).
Also, it is possible to implement domain specific language for logical programming in F#. This means that you'd implement something like Prolog within F# and then write your search algorithms using this mini-language in F# (possibly using other F# features as needed). You can find more information about similar problems in this question.
F# is a general purpose language with some nice language features, such as computation expression/Monad and quotation. You can assume that it has about the same power as C#.
It is not like Matlab or R, where a lot of pre-implemented libraries are built-in. If you want to implement a Fuzzy Logic library or other AI algorithms from scratch, F# is a very good language for you as its language features make life easier.
But if you just want to use a Fuzzy logic library, then using other languages or specialized systems will be more appropriate because F# or .Net in general does not have very good quality libraries in this aspect.

Decomposition (modularity) in functional languages

Got an idea: functions (in FP) could be composed similar ways as components in OOP. For components in OOP we use interfaces. For functions we could use delegates. Goal is to achieve decomposition, modularity and interchangeability. We could employ dependency injection to make it easier.
I tried to find something about the topic. No luck. Probably because there are no functional programs big enough to need this? While searching for enterprise scale applications written in FP I found this list.
Functional Programming in the Real World and this paper.
I hope I just missed the killer applications for FP, which would be big enough to deserve decomposition.
Question: Could you show decent real-world FP application (preferably open source), which uses decomposition into modules?
Bonus chatter: What is the usual pattern used? What kind of functions are usually decomposed into separate modules? Are the implementations ever mocked for testing purposes?
Some time ago I was learning F# and wondering about the same topics, so I asked about quality open source projects to learn from.
The reason why you're not seeing anything similar to dependency injection in functional programming is that it's just "natural", because you "inject dependencies" just by passing or composing functions. Or as this article puts it, "Functional dependency injection == currying", but that's just one mechanism.
Mocking frameworks are not necessary. If you need to mock something, you just pass a "stub" function.
See also this question about real-world Scala applications.
Either we're talking at cross-purposes (it's possible: I'm rather unfamiliar with OOP terminology) or you're missing a lot about functional programming. Modules and abstraction (i.e. interchangability) were basically invented in the functional language CLU. The seminal papers on abstract types are James Morris's Protection in programming languages and Types are not sets. Later, most improvements in module systems and abstraction have come from the functional programming world, through ML-like languages.
The killer application for functional programming is often said to be symbolic manipulation. Most compilers for functional languages are written in the language itself, so you could look up the source of your favorite functional language implementation. But pretty much any nontrivial program (functional or not) is written in a modular way to some extent — maybe I'm missing something about what you mean by “decomposition”? The modularity will be more visible and use more advanced concepts in strongly typed languages with an advanced module system, such as Standard ML and Objective Caml.

How does "Language Oriented Programming" compare to OOP/Functional in the real world

I recently began to read some F# related literature, speaking of "Real World Functional Programming" and "Expert F#" e. g.. At the beginning it's easy, because I have some background in Haskell, and know C#. But when it comes to "Language Oriented Programming" I just don't get it. - I read some explanations and it's like reading an academic paper that gets more abstract and strange with every sentence.
Does anybody have an easy example for that kind of stuff and how it compares to existing paradigms? It's not just academic fantasy, isn't it? ;)
Thanks,
wishi
Language oriented program (LOP) can be used to describe any of the following.
Creating an external language (DSL)
This is perhaps the most common use of LOP, and is where you have a specific domain - such as UPS shipping packages via transit types through routes, etc. Rather than try to encode all of these domain-specific entities inside of program code, you rather create a separate programming language for just that domain. So you can encode your problem in a separate, external language.
Creating an internal language
Sometimes you want your program code to look less like 'code' and map more closely to the problem domain. That is, have the code 'read more naturally'. A fluent interface is an example of this: Fluent Interface. Also, F# has Active Patterns which support this quite well.
I wrote a blog post on LOP a while back that provides some code examples.
F# has a few mechanisms for doing programming in a style one might call "language-oriented".
First, the syntax niceties (function calls don't need parentheses, can define own infix operators, ...) make it so that many user-defined libraries have the appearance of embedded DSLs.
Second, the F# "quotations" mechanism can enable you to quote code and then run it with an alternative semantics/evaluation engine.
Third, F# "computation expressions" (aka workflows, monads, ...) also provide a way to provide a type of alternative semantics for certain blocks of code.
All of these kinda fall into the EDSL category.
In Object Oriented Programming, you try to model a problem using Objects. You can then connect those Objects together to perform functions...and in the end solve the original problem.
In Language Oriented Programming, rather than use an existing Object Oriented or Functional Programming Language, you design a new Domain Specific Language that is best suited to efficiently solve your problem.
The term language Oriented Programming may be overloaded in that it might have different meanings to different people.
But in terms of how I've used it, it means that you create a DSL(http://en.wikipedia.org/wiki/Domain_Specific_Language) before you start to solve your problem.
Once your DSL is created you would then write your program in terms of the DSL.
The idea being that your DSL is more suited to expressing the problem than a General purpose language would be.
Some examples would be the make file syntax or Ruby on Rails ActiveRecord class.
I haven't directly used language oriented programming in real-world situations (creating an actual language), but it is useful to think about and helps design better domain-driven objects.
In a sense, any real-world development in Lisp or Scheme can be considered "language-oriented," since you are developing the "language" of your application and its abstract tree as you code along. Cucumber is another real-world example I've heard about.
Please note that there are some problems to this approach (and any domain-driven approach) in real-world development. One major problem that I've dealt with before is mismatch between the logic that makes sense in the domain and the logic that makes sense in software. Domain (business) logic can be extremely convoluted and senseless - and causes domain models to break down.
An easy example of a domain-specific language, mentioned here, is SQL. Also: UNIX shell scripts.
Of course, if you are doing a lot of basic ops and have a lot of overlap with the underlying language, it is probably overengineering.

How do you design a functional program? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
From day 1 of my programming career, I started with object-oriented programming. However, I'm interested in learning other paradigms (something which I've said here on SO a number of times is a good thing, but I haven't had the time to do). I think I'm not only ready, but have the time, so I'll be starting functional programming with F#.
However, I'm not sure how to structure much less design applications. I'm used to the one-class-per-file and class-noun/function-verb ideas in OO programming. How do you design and structure functional applications?
Read the SICP.
Also, there is a PDF Version available.
You might want to check out a recent blog entry of mine: How does functional programming affect the structure of your code?
At a high level, an OO design methodology is still quite useful for structuring an F# program, but you'll find this breaking down (more exceptions to the rule) as you get down to lower levels. At a physical level, "one class per file" will not work in all cases, as mutually recursive types need to be defined in the same file (type Class1 = ... and Class2 = ...), and a bit of your code may reside in "free" functions not bound to a particular class (this is what F# "module"s are good for). The file-ordering constraints in F# will also force you to think critically about the dependencies among types in your program; this is a double-edged sword, as it may take more work/thought to untangle high-level dependencies, but will yield programs that are organized in a way that always makes them approachable (as the most primitive entities always come first and you can always read a program from 'top to bottom' and have new things introduced one-by-one, rather than just start looking a directory full of files of code and not know 'where to start').
How to Design Programs is all about this (at tiresome length, using Scheme instead of F#, but the principles carry over). Briefly, your code mirrors your datatypes; this idea goes back to old-fashioned "structured programming", only functional programming is more explicit about it, and with fancier datatypes.
Given that modern functional languages (i.e. not lisps) by default use early-bound polymorphic functions (efficiently), and that object-orientation is just a particular way of arranging to have polymorphic functions, it's not really very different, if you know how to design properly encapsulated classes.
Lisps use late-binding to achieve a similar effect. To be honest, there's not much difference, except that you don't explictly declare the structure of types.
If you've programmed extensively with C++ template functions, then you probably have an idea already.
In any case, the answer is small "classes" and instead of modifying internal state, you have to return a new version with different state.
F# provides the conventional OO approachs for large-scale structured programming (e.g. interfaces) and does not attempt to provide the experimental approaches pioneered in languages like OCaml (e.g. functors).
Consequently, the large-scale structuring of F# programs is essentially the same as that of C# programs.
Functional programming is a different paradigm for sure. Perhaps the easiest way to wrap your head around it is to insist that the design be laid out using a flow chart. Each function is distinct, no inheritance, no polymorphism, distinct. The data is passed around from function to function to make deletions, updates, insertion, and create new data.
On structuring functional programs:
While OO languages structure the code with classes, functional languages structure it with modules. Objects contain state and methods, modules contain data types and functions. In both cases the structural units group data types together with related behavior. Both paradigms have tools for building and enforcing abstraction barriers.
I would highly recommend picking a functional programming language you are comfortable with (F#, OCaml, Haskell, or Scheme) and taking a long look at how its standard library is structured.
Compare, for example, the OCaml Stack module with System.Collections.Generic.Stack from .NET or a similar collection in Java.
It is all about pure functions and how to compose them to build larger abstractions. This is actually a hard problem for which a robust mathematical background is needed. Luckily, there are several patterns with deep formal and practical research available. On Functional and Reactive Domain Modeling Debasish Ghosh explores this topic further and puts together several practical scenarios applying pure functional patterns:
Functional and Reactive Domain Modeling teaches you how to think of
the domain model in terms of pure functions and how to compose them to
build larger abstractions. You will start with the basics of
functional programming and gradually progress to the advanced concepts
and patterns that you need to know to implement complex domain models.
The book demonstrates how advanced FP patterns like algebraic data
types, typeclass based design, and isolation of side-effects can make
your model compose for readability and verifiability.

If you already know LISP, why would you also want to learn F#?

What is the added value for learning F# when you are already familiar with LISP?
Static typing (with type inference)
Algebraic data types
Pattern matching
Extensible pattern matching with active patterns.
Currying (with a nice syntax)
Monadic programming, called 'workflows', provides a nice way to do asynchronous programming.
A lot of these are relatively recent developments in the programming language world. This is something you'll see in F# that you won't in Lisp, especially Common Lisp, because the F# standard is still under development. As a result, you'll find there is a quite a bit to learn. Of course things like ADTs, pattern matching, monads and currying can be built as a library in Lisp, but it's nicer to learn how to use them in a language where they are conveniently built-in.
The biggest advantage of learning F# for real-world use is its integration with .NET.
Comparing Lisp directly to F# isn't really fair, because at the end of the day with enough time you could write the same app in either language.
However, you should learn F# for the same reasons that a C# or Java developer should learn it - because it allows functional programming on the .NET platform. I'm not 100% familiar with Lisp, but I assume it has some of the same problems as OCaml in that there isn't stellar library support. How do you do Database access in Lisp? What about high-performance graphics?
If you want to learn more about 'Why .NET', check out this SO question.
If you knew F# and Lisp, you'd find this a rather strange question to ask.
As others have pointed out, Lisp is dynamically typed. More importantly, the unique feature of Lisp is that it's homoiconic: Lisp code is a fundamental Lisp data type (a list). The macro system takes advantage of that by letting you write code which executes at compile-time and modifies other code.
F# has nothing like this - it's a statically typed language which borrows a lot of ideas from ML and Haskell, and runs it on .NET
What you are asking is akin to "Why do I need to learn to use a spoon if I know how to use a fork?"
Given that LISP is dynamically typed and F# is statically typed, I find such comparisons strange.
If I were switching from Lisp to F#, it would be solely because I had a task on my hands that hugely benefitted from some .NET-only library.
But I don't, so I'm not.
Money. F# code is already more valuable than Lisp code and this gap will widen very rapidly as F# sees widespread adoption.
In other words, you have a much better chance of earning a stable income using F# than using Lisp.
Cheers,
Jon Harrop.
F# is a very different language compared to most Lisp dialects. So F# gives you a very different angle of programming - an angle that you won't learn from Lisp. Most Lisp dialects are best used for incremental, interactive development of symbolic software. At the same time most Lisp dialects are not Functional Programming Languages, but more like multi-paradigm languages - with different dialects placing different weight on supporting FPL features (free of side effects, immutable data structures, algebraic data types, ...). Thus most Lisp dialects either lack static typing or don't put much emphasis on it.
So, if you know some Lisp dialect, then learning F# can make a lot of sense. Just don't think that much of your Lisp knowledge applies to F#, since F# is a very different language. As much as an imperative programming used to C or Java needs to unlearn some ideas when learning Lisp, one also needs to unlearn Lisp habits (no types, side effects, macros, ...) when using F#. F# is also driven by Microsoft and taking advantage of the .net framework.
F# has the benefit that .NET development (in general) is very widely adopted, easily available, and more mass market.
If you want to code F#, you can get Visual Studio, which many developers will already have...as opposed to getting the LISP environment up and running.
Additionally, existing .NET developers are much more likely to look at F# than LISP, if that means anything to you.
(This is coming from a .NET developer who coded, and loved, LISP, while in college).
I'm not sure if you would? If you find F# interesting that would be a reason. If you work requires it, it would be a reason. If you think it would make you more productive or bring you added value over your current knowledge, that would be a reason.
But if you don't find F# interesting, your work doesn't require it and you don't think it would make you more productive or bring you added value, then why would you?
If the question on the other hand is what F# gives that lisp don't, then type inference, pattern matching and integration with the rest of the .NET framework should be considered.
I know this thread is old but since I stumbled on this one I just wanted to comment on my reasons. I am learning F# simply for professional opportunities since .NET carries a lot of weight in a category of companies that dominate my field. The functional paradigm has been growing in use among more quantitatively and data oriented companies and I'd like to be one of the early comers to this trend. Currently there doesn't an exist a strong functional language that fully and safely integrates with the .NET library. I actually attempted to port some .NET from Lisp code and it's really a pain b/c the FFI only supports C primitives and .NET interoperability requires an 'interface' construct and even though I know how to do this in C it's really a huge pain. It would be really, really, good if Lisp went the extra mile in it's next standard and required a c++ class (including virtual functions w/ vtables), and a C# style interface type in it's FFI. Maybe even throw in a Java interface style type too. This would allow complete interoperability with the .NET library and make Lisp a strong contender as a large-scale language. However with that said, coming from a Lisp background made learning F# rather easy. And I like how F# has gone the extra mile to provide types that you would commonly see it quantitative type work. I believe F# was created with mathematical work in mind and that in itself has value over Lisp.
One way to look at this (the original question) is to match up the language (and associated tools and platforms) to the immediate task. If the task requires an overwhelming percentage of .NET code, and it would require less shoe-horning in one language than another to meet the task head-on, then take the path of least resistance (F#). If you don't need .NET capabilities, and you're comfortable working with LISP and there's no arm-bending to move away from it, keep using it.
Not really much different from comparing a hammer with a wrench. Pick the tool that fits the job most effectively. Trying to pick a tool that's objectively "best" is nonsense. And in any case, in 20 years, all of the currently "hot" languages might be outdated anyway.

Resources