Parsing an input file which contains polynomials - parsing

Hello experienced pythoners.
The goal is simply to read in my own files which have the following format, and to then apply mathematical operations to these values and polynomials. The files have the following format:
m1:=10:
m2:=30:
Z1:=1:
Z2:=-1:
...
Some very similar variables, next come the laguerre polynomials
...
F:= (12.58295)*L(0,x)*L(1,y)*L(6,z) + (30.19372)*L(0,x)*L(2,y)*L(2,z) - ...:
Where L stands for a laguerre polynomial and takes two arguments.
I have written a procedure in Python which splits apart each line into a left and right hand side split using the "=" character as a divider. The format of these files is always the same, but the number of laguerre polynomials in F can vary.
import re
linestring = open("file.txt", "r").read()
linestring = re.sub("\n\n","\n",str(linestring))
linestring = re.sub(",\n",",",linestring)
linestring = re.sub("\\+\n","+",linestring)
linestring = re.sub(":=\n",":=",linestring)
linestring = re.sub(":\n","\n",linestring)
linestring = re.sub(":","",linestring)
LINES = linestring.split("\n")
for LINE in LINES:
LINE = re.sub(" ","",LINE)
print "LINE=", LINE
if len(LINE) <=0:
next
PAIR = LINE.split("=")
print "PAIR=", PAIR
LHS = PAIR[0]
RHS = PAIR[1]
print "LHS=", LHS
print "RHS=", RHS
The first re.sub block just deals with formatting the file and discarding characters that python will not be able to process; then a loop is performed to print 4 things, LINE, PAIR, LHS and RHS, and it does this nicely. using the example file from above the procedure will print the following:
LINE= m1=1
PAIR= ['m1', '1']
LHS= m1
RHS= 1
LINE= m2=1
PAIR= ['m2', '1']
LHS= m2
RHS= 1
LINE= Z1=-1
PAIR= ['Z1', '-1']
LHS= Z1
RHS= -1
LINE= Z2=-1
PAIR= ['Z2', '-1']
LHS= Z2
RHS= -1
LINE= F= 12.5*L(0,x)L(1,y) + 30*L(0,x)L(2,y)L(2,z)
PAIR=['F', '12.5*L(0,x)L(1,y) + 30*L(0,x)L(2,y)L(2,z)']
LHS= F
RHS= 12.5*L(0,x)L(1,y) + 30*L(0,x)L(2,y)L(2,z)
My question is what is the next best step to process this output and use it in a mathematical script, especially assigning the L to mean a laguerre polynomial? I tried putting the LHS and RHS into a dictionary, but found it troublesome to put F in it due to the laguerre polynomials.
Any ideas are welcome. Perhaps I am overcomplicating this and there is a much simpler way to parse this file.
Many thanks in advance

Your parsing algorithm doesn't seem to work correctly, as the RHS of your variables dont produce the expected result.
Also the first re.sub block where you want to format the file seems overly complicated. Assuming every statement in your input file is terminated by a colon, you could get rid of all whitespace and newlines and seperate the statements using the following code:
linestring = open('file.txt','r').read()
strippedstring = linestring.replace('\n','').replace(' ','')
statements = re.split(':(?!=)',strippedstring)[:-1]
Then you iterate over the statements and split each one in LHS and RHS:
for st in statements:
lhs,rhs = re.split(':=',st)
print 'lhs=',lhs
print 'rhs=',rhs
In the next step, try to distinguish normal float variables and polynomials:
#evaluate rhs
try:
#interpret as numeric constant
f = float(rhs)
print " ",f
except ValueError:
#interpret as laguerre-polynomial
summands = re.split('\+', re.sub('-','+-',rhs))
for s in summands:
m = re.match("^(?P<factor>-?[0-9]*(\.[0-9]*)?)(?P<poly>(\*?L\([0-9]+,[a-z]\))*)", s)
if not m:
print ' polynomial misformatted'
continue
f = m.group('factor')
print ' factor: ',f
p = m.group('poly')
for l in re.finditer("L\((?P<a>[0-9]+),(?P<b>[a-z])\)",p):
print ' poly: L(%s,%s)' % (l.group("a"),l.group("b"))
This should work for your given example file.

Related

Adding quadratic constraints in docplex

I have problem by writing quadratic constraints by docplex in python
This is my constraint:
A[i,j,k]=Z[i,j,k] *h[i,j,k]+Q[i,j,k]*d[i,j,k] ∀i,j,k
I wrote the constraint as below:
mdl.add_quadratic_constraints(z_qsd[i,j,k]*h_qsd[i,j,k]+Q_qsd[i,j,k]*d_qsd[i,j,k]==A_qsd[i,j,k] for i in q_ualification for j in s_hift for k in d_ay)
when I solve the model, I get this message:
Model is non-convex
The multiplication operator '*' has been overloaded in DOcplex to write quadratic expression. In other terms, you can multiply two variables.
Forgetting about indices, and assuming you have only four variables A,z,h,Q
the constraint can be written as:
mdl.add(A == Z *h + Q *d)
Now, for three-dimensional variables, you should use a variation of Model.continuous_var_cube (change the type), for example:
As = mdl.continous_var_cube(3,5,7, "A")
which builds a Python dictionary of variables, indexed by tuples of indices in the cartesian product of the
three ranges (1..3)x(1..5)x(1..7), that is 3x5x7 = 85 variables.
Each variable can be accessed by a collection of indices,
as in
a123 = As[1,2,3]
Here is a small quadratic-objective
problem example, inspired by the famous "zoo" examples from Alex Fleischer
(see https://www.linkedin.com/pulse/making-optimization-simple-python-alex-fleischer/ for more)
mdl = Model(name='buses')
nbbus40 = mdl.integer_var(name='nbBus40')
nbbus30 = mdl.integer_var(name='nbBus30')
mdl.add_constraint(nbbus40*40 + nbbus30*30 >= 300, 'kids')
# X**2 is the square of variable X
mdl.minimize(500 * nbbus40**2 + 400 * nbbus30**2)
mdl.solve()
for v in mdl.iter_integer_vars():
print(v," = ",v.solution_value)

Generating star pattern in LUA

I am new to programming in LUA. And I am not able to solve this question below.
Given a number N, generate a star pattern such that on the first line there are N stars and on the subsequent lines the number of stars decreases by 1.
The pattern generated should have N rows. In every row, every fifth star (*) is replaced with a hash (#). Every row should have the required number of stars (*) and hash (#) symbols.
Sample input and output, where the first line is the number of test cases
This is what I tried.. And I am not able to move further
function generatePattern()
n = tonumber(io.read())
i = n
while(i >= 1)
do
j = 1
while(j<=i)
do
if(j<=i)
then
if(j%5 == 0)
then
print("#");
else
print("*");
end
print(" ");
end
j = j+1;
end
print("\n");
i = i-1;
end
end
tc = tonumber(io.read())
for i=1,tc
do
generatePattern()
end
First, just the stars without hashes. This part is easy:
local function pattern(n)
for i=n,1,-1 do
print(string.rep("*", i))
end
end
To replace each 5th asterisk with a hash, you can extend the expression with the following substitution:
local function pattern(n)
for i=n,1,-1 do
print((string.rep("*", i):gsub("(%*%*%*%*)%*", "%1#")))
end
end
The asterisks in the pattern need to be escaped with a %, since * holds special meaning within Lua patterns.
Note that string.gsub returns 2 values, but they can be truncated to one value by adding an extra set of parentheses, leading to the somewhat awkward-looking form print((..)).
Depending on Lua version the metamethod __index holding rep for repeats...
--- Lua 5.3
n=10
asterisk='*'
print(asterisk:rep(n))
-- puts out: **********
#! /usr/bin/env lua
for n = arg[1], 1, -1 do
local char = ''
while #char < n do
if #char %5 == 4 then char = char ..'#'
else char = char ..'*'
end -- mod 5
end -- #char
print( char )
end -- arg[1]
chmod +x asterisk.lua
./asterisk.lua 15
Please do not follow this answer since it is bad coding style! I would delete it but SO won't let me. See comment and other answers for better solutions.
My Lua print adds newlines to each printout, therefore I concatenate each character in a string and print the concatenated string out afterwards.
function generatePattern()
n = tonumber(io.read())
i = n
while(i >= 1)
do
ouput = ""
j = 1
while(j<=i)
do
if(j%5 == 0)
then
ouput=ouput .. "#";
else
ouput=ouput .. "*";
end
j = j+1;
end
print(ouput);
i = i-1;
end
end
Also this code is just yours minimal transformed to give the correct output. There are plenty of different ways to solve the task, some are faster or more intuitive than others.

How can I better parse variable time stamp information in Fortran?

I am writing code in gfortran to separate a variable time stamp into its separate parts of year, month, and day. I have written this code so the user can input what the time stamp format will be (ie. YEAR/MON/DAY, DAY/MON/YEAR, etc). This creates a total of 6 possible combinations. I have written code that attempts to deal with this, but I believe it to be ugly and poorly done.
My current code uses a slew of 'if' and 'goto' statements. The user provides 'tsfo', the time stamp format. 'ts' is a character array containing the time stamp data (as many as 100,000 time stamps). 'tsdelim' is the delimiter between the year, month, and day. I must loop from 'frd' (the first time stamp) to 'nlines' (the last time stamp).
Here is the relevant code.
* Choose which case to go to.
first = INDEX(tsfo,tsdelim)
second = INDEX(tsfo(first+1:),tsdelim) + first
if (INDEX(tsfo(1:first-1),'YYYY') .ne. 0) THEN
if (INDEX(tsfo(first+1:second-1),'MM') .ne. 0) THEN
goto 1001
else
goto 1002
end if
else if (INDEX(tsfo(1:first-1),'MM') .ne. 0) THEN
if (INDEX(tsfo(first+1:second-1),'DD') .ne. 0) THEN
goto 1003
else
goto 1004
end if
else if (INDEX(tsfo(1:first-1),'DD') .ne. 0) THEN
if (INDEX(tsfo(first+1:second-1),'MM') .ne. 0) THEN
goto 1005
else
goto 1006
end if
end if
first = 0
second = 0
* Obtain the Julian Day number of each data entry.
* Acquire the year, month, and day of the time stamp.
* Find 'first' and 'second' and act accordingly.
* Case 1: YYYY/MM/DD
1001 do i = frd,nlines
first = INDEX(ts(i),tsdelim)
second = INDEX(ts(i)(first+1:),tsdelim) + first
read (ts(i)(1:first-1), '(i4)') Y
read (ts(i)(first+1:second-1), '(i2)') M
read (ts(i)(second+1:second+2), '(i2)') D
* Calculate the Julian Day number using a function.
temp1(i) = JLDYNUM(Y,M,D)
end do
goto 1200
* Case 2: YYYY/DD/MM
1002 do i = frd,nlines
first = INDEX(ts(i),tsdelim)
second = INDEX(ts(i)(first+1:),tsdelim) + first
read (ts(i)(1:first-1), '(i4)') Y
read (ts(i)(second+1:second+2), '(i2)') M
read (ts(i)(first+1:second-1), '(i2)') D
* Calculate the Julian Day number using a function.
temp1(i) = JLDYNUM(Y,M,D)
end do
goto 1200
* Onto the next part of the code
1200 blah blah blah
I believe this code will work, but I do not think it is a very good method. Is there a better way to go about this?
It is important to note that the indices 'first' and 'second' must be calculated for each time stamp as the month and day can both be represented by 1 or 2 integers. The year is always represented by 4.
With only six permutations to handle I would just build a look-up table with the whole tsfo string as the key and the positions of year, month and day (1st, 2nd or 3rd) as the values. Any unsupported formats should produce an error, which I haven't coded below. When subsequently you loop though your ts list and split an item you know which positions to cast to the year, month and day integer variables:
PROGRAM timestamp
IMPLICIT NONE
CHARACTER(len=10) :: ts1(3) = ["2000/3/4 ","2000/25/12","2000/31/07"]
CHARACTER(len=10) :: ts2(3) = ["3/4/2000 ","25/12/2000","31/07/2000"]
CALL parse("YYYY/DD/MM",ts1)
print*
CALL parse("DD/MM/YYYY",ts2)
CONTAINS
SUBROUTINE parse(tsfo,ts)
IMPLICIT NONE
CHARACTER(len=*),INTENT(in) :: tsfo, ts(:)
TYPE sti
CHARACTER(len=10) :: stamp = "1234567890"
INTEGER :: iy = -1, im = -1, id = -1
END TYPE sti
TYPE(sti),PARAMETER :: stamps(6) = [sti("YYYY/MM/DD",1,2,3), sti("YYYY/DD/MM",1,3,2),&
sti("MM/DD/YYYY",2,3,1), sti("DD/MM/YYYY",3,2,1),&
sti("MM/YYYY/DD",2,1,3), sti("DD/YYYY/MM",3,1,2)]
TYPE(sti) :: thisTsfo
INTEGER :: k, k1, k2
INTEGER :: y, m, d
CHARACTER(len=10) :: cc(3)
DO k=1,SIZE(stamps)
IF(TRIM(tsfo) == stamps(k)%stamp) THEN
thisTsfo = stamps(k)
EXIT
ENDIF
ENDDO
print*,thisTsfo
DO k=1,SIZE(ts)
k1 = INDEX(ts(k),"/")
k2 = INDEX(ts(k),"/",BACK=.TRUE.)
cc(1) = ts(k)(:k1-1)
cc(2) = ts(k)(k1+1:k2-1)
cc(3) = ts(k)(k2+1:)
READ(cc(thisTsfo%iy),'(i4)') y
READ(cc(thisTsfo%im),'(i2)') m
READ(cc(thisTsfo%id),'(i2)') d
PRINT*,ts(k),y,m,d
ENDDO
END SUBROUTINE parse
END PROGRAM timestamp
I would encode the different cases in another way, like this:
module foo
implicit none
private
public encode_datecode
contains
integer function encode_datecode(datestr, sep)
character(len=*), intent(in) :: datestr, sep
integer :: first, second
character(len=1) :: c1, c2, c3
first = index(datestr, sep)
second = index(datestr(first+1:), sep) + first
c1 = datestr(1:1)
c2 = datestr(first+1:first+1)
c3 = datestr(second+1:second+1)
foo = num(c1) + 3*num(c2) + 9*num(c3)
end function encode_datecode
integer function num(c)
character(len=1) :: c
if (c == 'Y') then
num = 0
else if (c == 'M') then
num = 1
else if (c == 'D') then
num = 2
else
stop "Illegal character"
end if
end function num
end module foo
and then handle the legal cases (21, 15, 19, 7, 11, 5) in a SELECT statement.
This takes advantage of the fact that there won't be a 'YDDY/MY/YM' format.
If you prefer better binary or decimal readability, you can also multiply by four or by 10 instead of 3.

Format string to number with minimum length in lua

For example I need number with minimum 3 digit
"512" --> 512
"24" --> 24.0
"5" --> 5.00
One option is write small function. Using answers here for my case it will be something like this
function f(value, w)
local p = math.ceil(math.log10(value))
local prec = value <= 1 and w - 1 or p > w and 0 or w - p
return string.format('%.' .. prec .. 'f', value)
end
print(f(12, 3))
But may be it is possible just using string.format() or any other simple way?
Ok, it seems this case beyond the string.format power. Thanks to #Schollii, this is my current variant
function f(value, w)
local p = math.ceil(math.log10(value))
local prec = value <= 1 and w - 1 or p > w and 0 or w - p
return string.format('%.' .. prec .. 'f', value)
end
print(f(12, 3))
There is no format code specifically for this since string.format uses printf minus a few codes (like * which would hace simplified the solution I give below). So you have to implement yourself, for example:
function f(num, w)
-- get number of digits before decimal
local intWidth = math.ceil(math.log10(num))
-- if intWidth > w then ... end -- may need this
local fmt='%'..w..'.' .. (w-intWidth) .. 'f'
return string.format(fmt, num)
end
print(f(12, 4))
print(f(12, 3))
print(f(12, 2))
print(f(512, 3))
print(f(24, 3))
print(f(5, 3))
You should probably handle case where integer part doesn't fit in field width given (return ceil or floor?).
You can't. Maximum you can reach - specify floating point precision or digit number, but you can't force output to be like your example. Lua uses C like printf with few limitations reference. Look here for full specifiers list link. Remember unsupported ones.
Writing a function would be the best and only solution, especially as your task looks strange, as it doesn't count decimal dot.

How to print square of n*n given characters in prolog?

Write a Prolog program to print out a square of n*n given characters on the screen. Call your predicate square/2. The first argument should be a (positive) integer. the second argument the character (any Prolog term) to be printed. Example:
?-square(5, '*').
*****
*****
*****
*****
*****
Yes
I just start to learn this language. I did this:
square(_,'_').
square(N, 'B') :-
N>0,
write(N*'B').
It doesn't work at all. Can anyone help me?
So your question is, basically, "how do I write a loop nested in a loop?"
This is how you write an empty loop with an integer for a counter:
loop(0).
loop(N) :- N > 0, N0 is N-1, loop(N0).
which in C would be:
for(i=0; i < n; ++i) { }
And you seem to know already how to print (write(foo)).
Decompose the problem. To write an NxN square, you need to do two things:
Write N lines
Write a single line, consisting of N characters followed by a newline character.
The second is easy:
do_line(0,_) :-
nl
.
do_line(N,C) :-
N > 0 ,
write(C) ,
N1 is N-1 ,
do_line(N1,C)
.
The first isn't much more difficult:
do_lines(0,_,_).
do_lines(M,N,C) :-
M > 0 ,
do_line(N,C) ,
M1 is M-1 ,
do_lines(M1,N,C)
.
The all you need to do is wrap it:
write_square(N,C) :- do_lines(N,N,C) .
Easy!
You need to draw a line of N stars/characters
line(N,X):- N>0, N1 is N-1, line(N1,X), write(X), fail; true.
Then you will draw a column of N lines of stars/characters.
s(N,Chr):-sAux(N,0,Chr).
sAux(N,N,Chr).
sAux(N,C,Chr):-C<N, C1 is C+1, sAux(N, C1, Chr), line(N,Chr),nl.
s(N,Chr):- N>0, N1 is N-1, s(N1,X), linie(N,X), nl, fail;true.
Doing this:
square2(0,_). % base case, recursion stops when X reaches 0, second argument is irrelevent
square2(X,Symbol):-
X1 is X - 1,
write(Symbol),
square2(X1,Symbol).
With the query, which results in:
?- square2(5,'* ').
* * * * *
Therefore, we need another loop to make it write X times.
square1(0,_,_). % base case, recursion stops when X reaches 0
square1(X,Y,Symbol):-
X1 is X - 1,
square2(Y,Symbol), % with the same Y passed in square2 predicate to print a line of symbols
nl, % creates a new line
square1(X1,Y,Symbol).
However, the question is asking for the format with square(5, '* '). Therefore,
square(X,Symbol):-
square1(X,X,Symbol).
To wrap up:
square(X,Symbol):-
square1(X,X,Symbol).
square1(0,_,_).
square1(X,Y,Symbol):-
X1 is X - 1,
square2(Y,Symbol),
nl,
square1(X1,Y,Symbol).
square2(0,_).
square2(X,Symbol):-
X1 is X - 1,
write(Symbol),
square2(X1,Symbol).

Resources