Rascal - Rewrite AST using a visitor - rascal

I am trying to rewrite all the different Types in the AST to a single type (like char() for example). So far I am able to find the types, but I cannot seem to find a way to rewrite them.
So the idea is to do something like this (this example doesn't work ofcourse):
visit (ast) {
case \Type(_) => \Type(char())
}
Can someone please help me, and tell me how to do this?

One thing to remember is that you can't change values in Rascal using side effects: when you change a value, what you get instead is a new instance of that datatype with the changes, but the old instance still remains (if anything refers to it). When you do a visit, you get back a new instance of the datatype with any changes you've made, but you need to assign this somewhere or it will be lost. Here is an example illustrating this:
rascal>data A = a() | b();
ok
rascal>data A = c(A a);
ok
rascal>myA = c(a());
A: c(a())
rascal>visit(myA) { case a() => b() }
A: c(b())
rascal>myA;
A: c(a())
rascal>myA = visit(myA) { case a() => b() }
A: c(b())
rascal>myA;
A: c(b())
As you can see, with the first visit the a() inside c(a()) is changed to a b(), but myA is still what it was before. Once you assign the value of the visit into myA, the change is preserved.

Related

A few questions about Dart generics and type safety

I have the following Dart 2 code with null-safety.
extension Foo<T> on List<T> {
List<U> bar<U>({
U Function(T)? transform,
}) {
final t = transform ?? _identityTransform;
return map(t).toList();
}
}
U _identityTransform<T, U>(T t) => t as U; // #1, #2
void main() {
final strings = ['a', 'b', 'c'].bar<String>(); // #3
final ints = ['1', '2', '3'].bar(transform: int.parse);
print(strings);
print(ints);
}
It is an extension method on List<T> with a custom method that is basically a map with the
difference that it can return a new list of the same type if no transform is specified. (My real code is more complex than this, but this example is enough to present my questions.)
I want to be able to call bar() on a List with transform or without; if called without it, _identityTransform should be used.
The code above works, but I have a few reservations as to its quality, and questions, as I haven't really come to terms with Dart generics yet:
In the line marked #1 - the _identityTransform takes two generic parameters as I need access to them, but when the function is used the generic types are not used because I don't think it is possible to write something like _identityTransform<T, U> there. Is there a better way of defining _identityTransform? Am I losing any type safety with my current code?
In the line marked #2 I need a cast as U for the code to compile, I haven't managed to make the code work without it. Is there a way to do it without the cast?
In the line marked #3, when I call the extension method without any transform (i.e. I want the identity transform to kick in) I need to explicitly pass the generic type, otherwise the compiler complains about missing generic type (in strong mode) or infers strings to be List<dynamic> (strong mode turned off). Is some generics magic possible to be able to call .bar() and still have strings be inferred to List<String>?
I would make _identityTransform a nested function of bar so that you can remove its type arguments and instead use the same T and U as bar:
extension Foo<T> on List<T> {
List<U> bar<U>({
U Function(T)? transform,
}) {
U _identityTransform(T t) => t as U;
final t = transform ?? _identityTransform;
return map(t).toList();
}
}
Alternatively if you want to explicitly use _identityTransform<T, U>, then you could use a closure: t = transform ?? (arg) => _identityTransform<T, U>(arg), but that seems like overkill.
You need the cast. T and U are independent/unrelated types. Since you don't know that you want T and U to be the same until bar checks its argument at runtime, you will need the explicit cast to satisfy static type checking.
If the caller passes nothing for the transform argument, there is nothing to infer U from, so it will be dynamic. I can't think of any magical way make U default to T in such a case (again, that would be known only at runtime, but generics must satisfy static analysis).

Very untyped and recursive class definition that compiles but seems a corner case to me

These 4 lines compile but do not make sense to me :
open System
type mclas (y) =
member x.m = x.m
let z = mclas (1:>obj)
Question : In what case would we need to code in such way ? Am I activating subtle class features I am not aware of ?
Edit : If there is no use case, what is the status of this piece of code regarding compiler warning/error and is it eligible for some Issue raising on github ?
Note : At runtime, the debugger cannot evaluate variable z saying "Function evaluation timed out".
The member m actually compiles to something like this in IL:
.property instance object m {
.get instance object Program/mclas::get_m()
}
So m is a property of type object which has a getter that recurses endless. The C# equivalent of this would be:
public class mclas
{
public mclas(object y) { }
public object x {
get {
return x;
}
}
}
Because the recursion never ends, taking too long and/or there is a StackOverflowException happening when the Debugger tries to evaluate m, it cancels and spits out that the evaluation timed out.
And for your actual question: I don't think that you ever need this kind of self-reference in F#, at least I can't think of any possible use.
I think that this behaviour of the compiler makes sense, because a member without paramters will always compile to a get-only property, and then this would be the most obvious way of defining an infinite recursing property (just because this has no use doesn't mean that you can't do it).

Unable to use protected events in F#

Let's say we have the following C# class
public class Class1
{
protected event EventHandler ProtectedEvent;
protected virtual void OverrideMe() { }
}
It seems to be impossible to use the ProtectedEvent in F#.
type HelpMe() as this =
inherit Class1()
do
printfn "%A" this.ProtectedEvent
member x.HookEvents() =
printfn "%A" x.ProtectedEvent
member private x.HookEvents2() =
printfn "%A" x.ProtectedEvent
override x.OverrideMe() =
printfn "%A" x.ProtectedEvent
In this example I have attempted to call printfn on it, as there are multiple ways to hook up events in F# and I wanted to be clear that is simply the referencing of the event at all that causes the problem.
In each of the cases above the compiler complains with the following error
A protected member is called or 'base' is being used. This is only
allowed in the direct implementation of members since they could
escape their object scope.
I understand this error, what causes it and its purpose. Usually, the work around is to wrap the call in a private member, which works fine with methods - but that does not seem to work with events. No matter what I try, it seems to be impossible to use protected events in F# unless I resort to doing something with reflection, or make some changes to the base class (which in my case is not possible).
Note that I have also tried all possible combinations of using base, this and x.
Am I doing something wrong ?
I suspect that there is something about the code that the compiler generates behind the scene when you treat the event as a first-class value that later confuses it (i.e. some hidden lambda function that makes the compiler think it cannot access the protected member). I'd say that this is a bug.
As far as I can see, you can workaround it by using add_ProtectedEvent and remove_ProtectedEvent members directly (they do not show in the auto-completion, but they are there and are accessible - they are protected, but calling them is a direct method call, which is fine):
type HelpMe() =
inherit Class1()
member x.HookEvents() =
let eh = System.EventHandler(fun _ _ -> printfn "yay")
x.add_ProtectedEvent(eh)
override x.OverrideMe() =
printfn "hello"
This compiled fine for me. It is a shame that you cannot use the protected event as a first-class value, but this at least lets you use it...

Using mirrors, how can I get a reference to a class's method?

Say I have an instance of a class Foo, and I want to grab a list of all of its methods that are annotated a certain way. I want to have a reference to the method itself, so I'm not looking to use reflection to invoke the method each time, just to grab a reference to it the first time.
In other words, I want to do the reflection equivalent of this:
class Foo {
a() {print("a");}
}
void main() {
var f = new Foo();
var x = f.a; // Need reflective way of doing this
x(); // prints "a"
}
I have tried using InstanceMirror#getField, but methods are not considered fields so that didn't work. Any ideas?
As far as I understand reflection in Dart, there's no way to get the actual method as you wish to. (I'll very happily delete this answer if someone comes along and shows how to do that.)
The best I can come up with to ameliorate some of what you probably don't like about using reflection to invoke the method is this:
import 'dart:mirrors';
class Foo {
a() {print("a");}
}
void main() {
var f = new Foo();
final fMirror = reflect(f);
final aSym = new Symbol('a');
final x = () => fMirror.invoke(aSym, []);
x(); // prints "a"
}
Again, I know that's not quite what you're looking for, but I believe it's as close as you can get.
Side note: getField invokes the getter and returns the result -- it's actually fine if the getter is implemented as a method. It doesn't work for you here, but for a different reason than you thought.
What you're trying to get would be described as the "closurized" version of the method. That is, you want to get the method as a function, where the receiver is implicit in the function invocation. There isn't a way to get that from the mirror. You could get a methodMirror as
reflect(foo).type.methods[const Symbol("a")]
but you can't invoke the result.

Is there a way to inject support for the F# Option type into ServiceStack?

Updated below...
I recently started experimenting with ServiceStack in F#, so naturally I started with porting the Hello World sample:
open ServiceStack.ServiceHost
open ServiceStack.ServiceInterface
open ServiceStack.WebHost.Endpoints
[<CLIMutable; Route("/hello"); Route("/hello/{Name}")>]
type Hello = { Name : string }
[<CLIMutable>]
type HelloResponse = { Result : string }
type HelloService() =
inherit Service()
member x.Any(req:Hello) =
box { Result = sprintf "Hello, %s!" req.Name }
type HelloAppHost() =
inherit AppHostBase("Hello Web Services", typeof<HelloService>.Assembly)
override x.Configure container = ()
type Global() =
inherit System.Web.HttpApplication()
member x.Application_Start() =
let appHost = new HelloAppHost()
appHost.Init()
That works great. It's very concise, easy to work with, I love it. However, I noticed that the routes defined in the sample allow for the Name parameter to not be included. Of course, Hello, ! looks kind of lame as output. I could use String.IsNullOrEmpty, but it is idiomatic in F# to be explicit about things that are optional by using the Option type. So I modified my Hello type accordingly to see what would happen:
[<CLIMutable; Route("/hello"); Route("/hello/{Name}")>]
type Hello = { Name : string option }
As soon as I did this, the F# type system forced me to deal with the fact that Name might not have a value, so I changed HelloService to this to get everything to compile:
type HelloService() =
inherit Service()
member x.Any(req:Hello) =
box { Result =
match req.Name with
| Some name -> sprintf "Hello, %s!" name
| None -> "Hello!" }
This compiles, and runs perfectly when I don't supply a Name parameter. However, when I do supply a name...
KeyValueDataContractDeserializer: Error converting to type: Type
definitions should start with a '{', expecting serialized type
'FSharpOption`1', got string starting with: World
This wasn't a complete surprise of course, but it brings me to my question:
It would be trivial for me to write a function that can wrap an instance of type T into an instance of type FSharpOption<T>. Are there any hooks in ServiceStack that would let me provide such a function for use during deserialization? I looked, but I couldn't find any, and I'm hoping I was just looking in the wrong place.
This is more important for F# use than it might seem at first, because classes defined in F# are by default not allowed to be null. So the only (satisfying, non-hacky) way of having one class as an optional property of another class is with, you guessed it, the Option type.
Update:
I was able to sort-of get this working by making the following changes:
In the ServiceStack source, I made this type public:
ServiceStack.Text.Common.ParseFactoryDelegate
...and I also made this field public:
ServiceStack.Text.Jsv.JsvReader.ParseFnCache
With those two things public, I was able to write this code in F# to modify the ParseFnCache dictionary. I had to run this code prior to creating an instance of my AppHost - it didn't work if I ran it inside the AppHost's Configure method.
JsvReader.ParseFnCache.[typeof<Option<string>>] <-
ParseFactoryDelegate(fun () ->
ParseStringDelegate(fun s -> (if String.IsNullOrEmpty s then None else Some s) |> box))
This works for my original test case, but aside from the fact that I had to make brittle changes to the internals of ServiceStack, it sucks because I have to do it once for each type I want to be able to wrap in an Option<T>.
What would be better is if I could do this in a generic way. In C# terms, it would be awesome if I could provide to ServiceStack a Func<T, Option<T>> and ServiceStack would, when deserializing a property whose generic type definition matches that of the return type of my function, deserialize T and then pass the result into my function.
Something like that would be amazingly convenient, but I could live with the once-per-wrapped-type approach if it were actually part of ServiceStack and not my ugly hack that probably breaks something somewhere else.
So there are a couple of extensibility points in ServiceStack, on the framework level you can add your own Custom Request Binder this allows you to provide your own model binder that's used, e.g:
base.RequestBinders.Add(typeof(Hello), httpReq => {
var requestDto = ...;
return requestDto;
});
But then you would need to handle the model binding for the different Content-Types yourself, see CreateContentTypeRequest for how ServiceStack does it.
Then there are hooks at the JSON Serializer level, e.g:
JsConfig<Hello>.OnDeserializedFn = dto => newDto;
This lets you modify the instance of the type returned, but it still needs to be the same type but it looks like the F# option modifier changes the structural definition of the type?
But I'm open to adding any hooks that would make ServiceStack more palatable for F#.
What does the code look like to generically convert a normal Hello type to an F# Hello type with option?
The only thing I can think of is to replace the option type with your own type, one that has an implicit conversion from string to myOption, and anything else you need.
Not all that nice, but workable. Your type would probably also need to be serializable.
type myOption =
| None
| Some of string
static member public op_Implicit (s:string) = if s <> null then Some s else None
member public this.Value = match this with
| Some s -> s
| _ -> null
member this.Opt = match this with
| Some s -> Option.Some s
| None -> Option.None
Your record type would then be
[<CLIMutable>]
type Hello =
{ Name : myOption }
On the other hand, ServiceStack is open source, so maybe something could be done there.

Resources