How do I add a button at every x degrees? [duplicate] - ios

I have an array of buttons and when I append them to a view I want the to be positioned around a image view which is in the center. Based on how many objects there are in the array, I want them to be evenly spaced around the whole circle. Below is my attempt to do so. What am I doing wrong and how should I fix it? There is more than one button behind the moose.
var userbutton = [UIButton]()
var upimage = [UIImage]()
var locationpic = [AnyObject]()
func locationsSet(){
for (index, users) in upimage.enumerate() {
let userbutton = UIButton()
userbutton.addTarget(self, action: "buttonAction:", forControlEvents: .TouchUpInside)
userbutton.frame = CGRectMake(100, 100, 50, 50)
userbutton.layer.cornerRadius = userbutton.frame.size.width/2
userbutton.clipsToBounds = true
userbutton.setImage(users, forState: .Normal)
let radians = CGFloat(M_PI) * 2.0 / CGFloat(upimage.count) * CGFloat(index)
let centerx = self.view.bounds.width / 2.0
let radius = currentuserpic.frame.size.width / 2.0
let centery = self.view.bounds.height / 2.0
let pointx = centerx + cos(radians) * (radius + 40)
let pointy = (centery) + (sin(radians)) * (radius + 40)
userbutton.center.x = pointx
userbutton.center.y = pointy
self.userbutton.append(userbutton)
self.view.addSubview(userbutton)
print("x\(pointx)")
print("y\(pointy)")
}
}

How I would do this:
Create an extension to UIView to get the diagonal and radius. These are handy because we want our "satellites" to have predictable placing even when the "planet" isn't square.
extension UIView {
var diagonal : CGFloat {
return sqrt(pow(self.frame.width, 2) + pow(self.frame.height, 2))
}
var radius : CGFloat {
return diagonal / 2
}
}
This will return a point based on an angle and a distance from an origin.
It uses dreadful trigonometry.
func getPoint(fromPoint point: CGPoint, atDistance distance: CGFloat, withAngleRadians angle:CGFloat) -> CGPoint {
let x = point.x
let y = point.y
let dx = (distance * cos(angle))
let dy = (distance * sin(angle))
return CGPoint(x: (dx + x), y: (dy + y))
}
Now the real function. Generate a bunch of points in a circle pattern. I used a running sum for the angle instead of multiplying each time by the index. This just returns the centre points for the views.
func encirclePoint(point : CGPoint, distance:CGFloat, inParts parts: Int) -> [CGPoint] {
let angle = 2 * CGFloat(M_PI) / CGFloat(parts) // critical part, you need radians for trigonometry
var runningAngle : CGFloat = -(CGFloat(M_PI) / 2) // start at the top
var points : [CGPoint] = []
for _ in 0..<parts {
let circlePoint = getPoint(fromPoint: point, atDistance: distance, withAngleRadians: runningAngle)
points.append(circlePoint)
runningAngle += angle
}
return points
}
Now you can create a simple function that takes a view, a margin and an array of "satellite" views. It will set their centre and add them to the superview of the view we used to input. It makes sense not to add them to the view itself since they might not be placed inside it.
func encircleView(view : UIView, withSubViews subViews : [UIView], withMargin margin : CGFloat) {
guard !(subViews.isEmpty) else { // if there are no subviews : abort
return
}
let distance = view.radius + margin
let points = encirclePoint(view.center, distance: distance, inParts: subViews.count)
guard subViews.count == points.count, let uberView = view.superview else { // if the count is not the same or there is no superview: abort
return
}
for (point, subView) in zip(points, subViews) { subView.center = point }
}
Notice how I did nothing except for the centre calculations in these functions. Styling them goes in another function. This makes it super easy to maintain and debug.
I might even let the last function just return the subviews with updated frames and add them later.
Or negative margin :)
Gist

A full circle is 2 * pi radians. You need to divide that by the number of items you have and multiply that by the index of the item you are currently processing. Use trig to find the location on the circle:
for (index, users) in upimage.enumerate() {
let radians = CGFloat(M_PI) * 2.0 / CGFloat(upimage.count) * CGFloat(index)
......
let centerx = self.view.bounds.width / 2.0
let radius = currentuserpic.frame.size.width / 2.0
let centery = self.view.bounds.height / 2.0
let pointx = centerx + cos(radians) * radius
let pointy = centery + sin(radians) * radius
......
}

Related

Spritekit Camera Node scale but pin the bottom of the scene

I have a camera node that is scaled at 1. When I run the game, I want it to scale it down (i.e. zoom out) but keep the "floor" at the bottom. How would I go about pinning the camera node to the bottom of the scene and effectively zooming "up" (difficult to explain). So the bottom of the scene stays at the bottom but the rest zooms out.
I have had a go with SKConstraints but not having any luck (I'm quite new at SpriteKit)
func setConstraints(with scene: SKScene, and frame: CGRect, to node: SKNode?) {
let scaledSize = CGSize(width: scene.size.width * xScale, height: scene.size.height * yScale)
let boardContentRect = frame
let xInset = min((scaledSize.width / 2), boardContentRect.width / 2)
let yInset = min((scaledSize.height / 2), boardContentRect.height / 2)
let insetContentRect = boardContentRect.insetBy(dx: xInset, dy: yInset)
let xRange = SKRange(lowerLimit: insetContentRect.minX, upperLimit: insetContentRect.maxX)
let yRange = SKRange(lowerLimit: insetContentRect.minY, upperLimit: insetContentRect.maxY)
let levelEdgeConstraint = SKConstraint.positionX(xRange, y: yRange)
if let node = node {
let zeroRange = SKRange(constantValue: 0.0)
let positionConstraint = SKConstraint.distance(zeroRange, to: node)
constraints = [positionConstraint, levelEdgeConstraint]
} else {
constraints = [levelEdgeConstraint]
}
}
then calling the function with:
gameCamera.setConstraints(with: self, and: scene!.frame, to: nil)
(This was code from a tutorial I was following) The "setConstraints" function is an extension of SKCameraNode
I'm not sure this will give me the correct output, but when I run the code to scale, it just zooms from the middle and shows the surrounding area of the scene .sks file.
gameCamera.run(SKAction.scale(to: 0.2, duration: 100))
This is the code to scale the gameCamera
EDIT: Answer below is nearly what I was looking for, this is my updated answer:
let scaleTo = 0.2
let duration = 100
let scaleTop = SKAction.customAction(withDuration:duration){
(node, elapsedTime) in
let newScale = 1 - ((elapsedTime/duration) * (1-scaleTo))
let currentScaleY = node.yScale
let currentHeight = node.scene!.size.height * currentScaleY
let newHeight = node.scene!.size.height * newScale
let heightDiff = newHeight - currentHeight
let yOffset = heightDiff / 2
node.setScale(newScale)
node.position.y += yOffset
}
You cannot use a constraint because your scale size is dynamic.
Instead you need to move your camera position to give the illusion it is only scaling in 3 directions.
To do this, I would recommend creating a custom action.
let scaleTo = 2.0
let duration = 1.0
let currentNodeScale = 0.0
let scaleTop = SKCustomAction(withDuration:duration){
(node, elapsedTime) in
if elapsedTime == 0 {currentNodeScale = node.scale}
let newScale = currentNodeScale - ((elapsedTime/duration) * (currentNodeScale-scaleTo))
let currentYScale = node.yScale
let currentHeight = node.scene.size.height * currentYScale
let newHeight = node.scene.size.height * newScale
let heightDiff = newHeight - currentHeight
let yOffset = heightDiff / 2
node.scale(to:newScale)
node.position.y += yOffset
}
What this is doing is comparing the new height of your camera with the old height, and moving it 1/2 the distance.
So if your current height is 1, this means your camera sees [-1/2 to 1/2] on the y axis. If you new scale height is 2, then your camera sees [-1 to 1] on the y axis. We need to move the camera up so that the camera sees [-1/2 to 3/2], meaning we need to add 1/2. So we do 2 - 1, which is 1, then go 1/2 that distance. This makes our yOffset 1/2, which you add to the camera.

Swift/SpriteKit - Ball node downwards angle of release

I need the ball node to be be initially released in my game in a downwards angle (which is randomly generated each time). I found out the velocity of the ball includes both the direction and speed (please correct me if this is wrong) therefore I generated a random angle and multiplied this by a value such as '0.5' to represent the impulse/speed. My code for this can be seen below:
let minAngle : UInt32 = 181
let maxAngle : UInt32 = 359
let randomAngle = arc4random_uniform(maxAngle - minAngle) + minAngle
let dx:CGFloat = 0.5 * CGFloat(randomAngle)
let dy:CGFloat = 0.5 * CGFloat(randomAngle)
ball.physicsBody?.velocity = CGVector(dx: dx, dy: dy)
However I realised this isn't working as the ball goes in upwards direction. Is my range in-correct or is my method of doing so incorrect? If it is my method how could I guarantee that the ball always is released in a downwards angle (I must also add a speed to the ball)?
Thanks
You need to use SIN COS and ATAN on angles to get where you are going.
If you know your angle and speed, you use SIN and COS:
extension Int {
var degreesToRadians: Double { return Double(self) * .pi / 180 }
var radiansToDegrees: Double { return Double(self) * 180 / .pi }
}
extension FloatingPoint {
var degreesToRadians: Self { return self * .pi / 180 }
var radiansToDegrees: Self { return self * 180 / .pi }
}
credit to Leo Dabus How can I convert from degrees to radians?
let minAngle = 181.degreesToRadans
let maxAngle = 359.degreesToRadans
let randomAngle = arc4random_uniform(maxAngle - minAngle) + minAngle
let dx:CGFloat = 0.5 * cos(CGFloat(randomAngle))
let dy:CGFloat = 0.5 * sin(CGFloat(randomAngle))
ball.physicsBody?.velocity = CGVector(dx: dx, dy: dy)
If you only know 2 points, and need to get the angle, you use arctan2:
(We need to make point1 our origin, so we subtract point2 from point1)
let point1 = CGPoint(x:0,y:1)
let point2 = CGPoint(x:0,y:2)
let distancePoint = CGPoint(x:point2.x - point1.x, y:point2.y - point1.y)
let angle = atan2(distancePoint.y,distancePoint.x)
spritekit works using radians not degrees. better to learn to think in terms of radians rather than degrees since that's what you'll be using. If you want to continue using degrees you can use this kind of formula.
func convertToRadians(degrees: Int) -> CGFloat {
return CGFloat(M_PI) * CGFloat(degrees) / 180
}
let minAngle = convertToRadians(degrees: 181)
let maxAngle = convertToRadians(degrees: 359)
another way of calculating it
let minAngle = CGFloat(Measurement(value: 181, unit: UnitAngle.degrees).converted(to: .radians).value)
let maxAngle = CGFloat(Measurement(value: 359, unit: UnitAngle.degrees).converted(to: .radians).value)
get a random angle in radians between two sets of degrees
func random() -> CGFloat {
return CGFloat(Float(arc4random()) / 0xFFFFFFFF)
}
func randomDegreesToRadians(min: CGFloat, max: CGFloat) -> CGFloat {
assert(min < max)
let randomDegrees = random() * (max - min) + min
return CGFloat(M_PI) * CGFloat(randomDegrees) / 180
}
randomDegreesToRadians(min: 100, max: 200)

How do I place the objects in the array around the center image?

I have an array of buttons and when I append them to a view I want the to be positioned around a image view which is in the center. Based on how many objects there are in the array, I want them to be evenly spaced around the whole circle. Below is my attempt to do so. What am I doing wrong and how should I fix it? There is more than one button behind the moose.
var userbutton = [UIButton]()
var upimage = [UIImage]()
var locationpic = [AnyObject]()
func locationsSet(){
for (index, users) in upimage.enumerate() {
let userbutton = UIButton()
userbutton.addTarget(self, action: "buttonAction:", forControlEvents: .TouchUpInside)
userbutton.frame = CGRectMake(100, 100, 50, 50)
userbutton.layer.cornerRadius = userbutton.frame.size.width/2
userbutton.clipsToBounds = true
userbutton.setImage(users, forState: .Normal)
let radians = CGFloat(M_PI) * 2.0 / CGFloat(upimage.count) * CGFloat(index)
let centerx = self.view.bounds.width / 2.0
let radius = currentuserpic.frame.size.width / 2.0
let centery = self.view.bounds.height / 2.0
let pointx = centerx + cos(radians) * (radius + 40)
let pointy = (centery) + (sin(radians)) * (radius + 40)
userbutton.center.x = pointx
userbutton.center.y = pointy
self.userbutton.append(userbutton)
self.view.addSubview(userbutton)
print("x\(pointx)")
print("y\(pointy)")
}
}
How I would do this:
Create an extension to UIView to get the diagonal and radius. These are handy because we want our "satellites" to have predictable placing even when the "planet" isn't square.
extension UIView {
var diagonal : CGFloat {
return sqrt(pow(self.frame.width, 2) + pow(self.frame.height, 2))
}
var radius : CGFloat {
return diagonal / 2
}
}
This will return a point based on an angle and a distance from an origin.
It uses dreadful trigonometry.
func getPoint(fromPoint point: CGPoint, atDistance distance: CGFloat, withAngleRadians angle:CGFloat) -> CGPoint {
let x = point.x
let y = point.y
let dx = (distance * cos(angle))
let dy = (distance * sin(angle))
return CGPoint(x: (dx + x), y: (dy + y))
}
Now the real function. Generate a bunch of points in a circle pattern. I used a running sum for the angle instead of multiplying each time by the index. This just returns the centre points for the views.
func encirclePoint(point : CGPoint, distance:CGFloat, inParts parts: Int) -> [CGPoint] {
let angle = 2 * CGFloat(M_PI) / CGFloat(parts) // critical part, you need radians for trigonometry
var runningAngle : CGFloat = -(CGFloat(M_PI) / 2) // start at the top
var points : [CGPoint] = []
for _ in 0..<parts {
let circlePoint = getPoint(fromPoint: point, atDistance: distance, withAngleRadians: runningAngle)
points.append(circlePoint)
runningAngle += angle
}
return points
}
Now you can create a simple function that takes a view, a margin and an array of "satellite" views. It will set their centre and add them to the superview of the view we used to input. It makes sense not to add them to the view itself since they might not be placed inside it.
func encircleView(view : UIView, withSubViews subViews : [UIView], withMargin margin : CGFloat) {
guard !(subViews.isEmpty) else { // if there are no subviews : abort
return
}
let distance = view.radius + margin
let points = encirclePoint(view.center, distance: distance, inParts: subViews.count)
guard subViews.count == points.count, let uberView = view.superview else { // if the count is not the same or there is no superview: abort
return
}
for (point, subView) in zip(points, subViews) { subView.center = point }
}
Notice how I did nothing except for the centre calculations in these functions. Styling them goes in another function. This makes it super easy to maintain and debug.
I might even let the last function just return the subviews with updated frames and add them later.
Or negative margin :)
Gist
A full circle is 2 * pi radians. You need to divide that by the number of items you have and multiply that by the index of the item you are currently processing. Use trig to find the location on the circle:
for (index, users) in upimage.enumerate() {
let radians = CGFloat(M_PI) * 2.0 / CGFloat(upimage.count) * CGFloat(index)
......
let centerx = self.view.bounds.width / 2.0
let radius = currentuserpic.frame.size.width / 2.0
let centery = self.view.bounds.height / 2.0
let pointx = centerx + cos(radians) * radius
let pointy = centery + sin(radians) * radius
......
}

Spawning a circle in a random spot on screen

I've been racking my brain and searching here and all over to try to find out how to generate a random position on screen to spawn a circle. I'm hoping someone here can help me because I'm completely stumped. Basically, I'm trying to create a shape that always spawns in a random spot on screen when the user touches.
override func touchesBegan(touches: Set<NSObject>, withEvent event: UIEvent) {
let screenSize: CGRect = UIScreen.mainScreen().bounds
let screenHeight = screenSize.height
let screenWidth = screenSize.width
let currentBall = SKShapeNode(circleOfRadius: 100)
currentBall.position = CGPointMake(CGFloat(arc4random_uniform(UInt32(Float(screenWidth)))), CGFloat(arc4random_uniform(UInt32(Float(screenHeight)))))
self.removeAllChildren()
self.addChild(currentBall)
}
If you all need more of my code, there really isn't any more. But thank you for whatever help you can give! (Just to reiterate, this code kind of works... But a majority of the spawned balls seem to spawn offscreen)
The problem there is that you scene is bigger than your screen bounds
let viewMidX = view!.bounds.midX
let viewMidY = view!.bounds.midY
print(viewMidX)
print(viewMidY)
let sceneHeight = view!.scene!.frame.height
let sceneWidth = view!.scene!.frame.width
print(sceneWidth)
print(sceneHeight)
let currentBall = SKShapeNode(circleOfRadius: 100)
currentBall.fillColor = .green
let x = view!.scene!.frame.midX - viewMidX + CGFloat(arc4random_uniform(UInt32(viewMidX*2)))
let y = view!.scene!.frame.midY - viewMidY + CGFloat(arc4random_uniform(UInt32(viewMidY*2)))
print(x)
print(y)
currentBall.position = CGPoint(x: x, y: y)
view?.scene?.addChild(currentBall)
self.removeAllChildren()
self.addChild(currentBall)
First: Determine the area that will be valid. It might not be the frame of the superview because perhaps the ball (let's call it ballView) might be cut off. The area will likely be (in pseudocode):
CGSize( Width of the superview - width of ballView , Height of the superview - height of ballView)
Once you have a view of that size, just place it on screen with the origin 0, 0.
Secondly: Now you have a range of valid coordinates. Just use a random function (like the one you are using) to select one of them.
Create a swift file with the following:
extension Int
{
static func random(range: Range<Int>) -> Int
{
var offset = 0
if range.startIndex < 0 // allow negative ranges
{
offset = abs(range.startIndex)
}
let mini = UInt32(range.startIndex + offset)
let maxi = UInt32(range.endIndex + offset)
return Int(mini + arc4random_uniform(maxi - mini)) - offset
}
}
And now you can specify a random number as follows:
Int.random(1...1000) //generate a random number integer somewhere from 1 to 1000.
You can generate the values for the x and y coordinates now using this function.
Given the following random generators:
public extension CGFloat {
public static var random: CGFloat { return CGFloat(arc4random()) / CGFloat(UInt32.max) }
public static func random(between x: CGFloat, and y: CGFloat) -> CGFloat {
let (start, end) = x < y ? (x, y) : (y, x)
return start + CGFloat.random * (end - start)
}
}
public extension CGRect {
public var randomPoint: CGPoint {
var point = CGPoint()
point.x = CGFloat.random(between: origin.x, and: origin.x + width)
point.y = CGFloat.random(between: origin.y, and: origin.y + height)
return point
}
}
You can paste the following into a playground:
import XCPlayground
import SpriteKit
let view = SKView(frame: CGRect(x: 0, y: 0, width: 500, height: 500))
XCPShowView("game", view)
let scene = SKScene(size: view.frame.size)
view.presentScene(scene)
let wait = SKAction.waitForDuration(0.5)
let popIn = SKAction.scaleTo(1, duration: 0.25)
let popOut = SKAction.scaleTo(0, duration: 0.25)
let remove = SKAction.removeFromParent()
let popInAndOut = SKAction.sequence([popIn, wait, popOut, remove])
let addBall = SKAction.runBlock { [unowned scene] in
let ballRadius: CGFloat = 25
let ball = SKShapeNode(circleOfRadius: ballRadius)
var popInArea = scene.frame
popInArea.inset(dx: ballRadius, dy: ballRadius)
ball.position = popInArea.randomPoint
ball.xScale = 0
ball.yScale = 0
ball.runAction(popInAndOut)
scene.addChild(ball)
}
scene.runAction(SKAction.repeatActionForever(SKAction.sequence([addBall, wait])))
(Just make sure to also paste in the random generators, too, or to copy them to the playground's Sources, as well as to open the assistant editor so you can see the animation.)

moveToPoint fails after upgrading to Swift 1.2 / Xcode 6.3

I've created a sub class of a UIView in which I draw a graph. I made it a public class so I can pass it new data and have it update when needed.
It all worked perfectly until I upgraded to Xcode 6.3 / Swift 1.2. Now when that view attempts to render my app crashes.
The error I get is:
Assertion failed: (CGFloatIsValid(x) && CGFloatIsValid(y)), function void CGPathMoveToPoint(CGMutablePathRef, const
CGAffineTransform *, CGFloat, CGFloat), file Paths/CGPath.cc, line
254.
Here is my code for the class:
import UIKit
public class GraphView: UIView {
//Data from parent VC
var graphPoints = [0, 0, 0, 0, 0, 0, 0]
var keyColor = BabyMasterStyleKit.bathsBase
override public func drawRect(rect: CGRect) {
let context = UIGraphicsGetCurrentContext()
let colorSpace = CGColorSpaceCreateDeviceRGB()
let width = rect.width
let height = rect.height
//calculate the x point
let margin:CGFloat = 15.0
var columnXPoint = { (column:Int) -> CGFloat in
//Calculate gap between points
let spacer = (width - margin*2 - 4) /
CGFloat((self.graphPoints.count - 1))
var x:CGFloat = CGFloat(column) * spacer
x += margin + 2
return x
}
// calculate the y point
let topBorder:CGFloat = 15
let bottomBorder:CGFloat = 15
let graphHeight = height - topBorder - bottomBorder
let maxValue = maxElement(graphPoints)
var columnYPoint = { (graphPoint:Int) -> CGFloat in
var y:CGFloat = CGFloat(graphPoint) /
CGFloat(maxValue) * graphHeight
y = graphHeight + topBorder - y // Flip the graph
return y
}
//Draw horizontal graph lines on the top of everything
var linePath = UIBezierPath()
//top line
linePath.moveToPoint(CGPoint(x:0, y: topBorder))
linePath.addLineToPoint(CGPoint(x: width,
y:topBorder))
//center line
linePath.moveToPoint(CGPoint(x:0,
y: graphHeight/2 + topBorder))
linePath.addLineToPoint(CGPoint(x:width,
y:graphHeight/2 + topBorder))
let color = UIColor.lightGrayColor()
color.setStroke()
linePath.lineWidth = 0.5
linePath.stroke()
// draw the line graph
keyColor.setFill()
keyColor.setStroke()
// set up the points line
var graphPath = UIBezierPath()
// go to start of line
graphPath.moveToPoint(CGPoint(x:columnXPoint(0), y:columnYPoint(graphPoints[0])))
// add points for each item in the graph points array
// at the correct (x, y) for the point
for i in 1..<graphPoints.count {
let nextPoint = CGPoint(x:columnXPoint(i),
y:columnYPoint(graphPoints[i]))
graphPath.addLineToPoint(nextPoint)
}
graphPath.stroke()
//Draw the circles on top of graph stroke
for i in 0..<graphPoints.count {
var point = CGPoint(x:columnXPoint(i), y:columnYPoint(graphPoints[i]))
point.x -= 5.0/2
point.y -= 5.0/2
let circle = UIBezierPath(ovalInRect:
CGRect(origin: point,
size: CGSize(width: 6.0, height: 6.0)))
circle.fill()
}
// add left and bottom borders
UIColor.lightGrayColor().setStroke()
var borderPath = UIBezierPath()
borderPath.moveToPoint(CGPoint(x:0, y:0))
borderPath.addLineToPoint(CGPoint(x:0, y:height))
borderPath.addLineToPoint(CGPoint(x:width, y:height))
borderPath.stroke()
}
}
The app fails at this line:
graphPath.moveToPoint(CGPoint(x:columnXPoint(0), y:columnYPoint(graphPoints[0])))
The array graphPoints is the data I am passing in. I have it set to all 0s as a default. In my ViewController I have a function that passes in an array of real data (7 different numbers) and then does a setNeedsDislay() to re-render the view as needed.
Thanks for your help.
When the input array is
var graphPoints = [0, 0, 0, 0, 0, 0, 0]
then
let maxValue = maxElement(graphPoints)
makes maxValue 0, so that the line in columnYpoint
var y:CGFloat = CGFloat(graphPoint) / CGFloat(maxValue) * graphHeight
does a divide-by-zero and makes y a NaN. It's a special case of having all zero elements in the initial array.
I think the default graphPoints array was being ignored, so when the view first loaded it didn't have values (though it did show that it was passing a 0 into the columnYPoint function, so who knows). As a work around I just tested for y.isNAN and if it was set it to equal 0. After I did that everything worked.
edit: Just checked to see if in fact the default array for graphPoints was getting ignored, and it wasn't. I think that it just doesn't like that it was being passed in a 0 value. If anyone has an idea as to why this would be, I'd love to hear about it.

Resources