I'm attempting to perform a storyboard segue inside of a completion handler like so:
movieWriter.finishRecordingWithCompletionHandler({ () -> Void in
//Leave this view
self.performSegueWithIdentifier("decisionSegue", sender: self)
})
and getting the following warning:
This application is modifying the autolayout engine from a background thread, which can lead to engine corruption and weird crashes. This will cause an exception in a future release.
The completion handler is running on a background so I understand why I'm getting this error, my question is what are my options for performing this segue without getting this error?
The reason I'm performing the segue in the completion handler is that the completion handler is called after a recorded movie is done being written to file and the view being segued to plays the movie, hence it needs to be on file before segueing.
Whenever your perform any operation on UI/active view then it has to be on main thread and not background thread.
Do as following:
__weak typeof(self) weakSelf = self; //Best practice
//Provide a weak reference in block and not strong.
movieWriter.finishRecordingWithCompletionHandler({ () -> Void in
dispatch_async(dispatch_get_main_queue(),{
weakSelf.performSegueWithIdentifier("decisionSegue", sender:weakSelf)
})
})
Put it in dispatch queue :
dispatch_async(dispatch_get_main_queue(),{
self.performSegueWithIdentifier("decisionSegue", sender: self)
})
Hope it will work
For more detailed information : This application is modifying the autolayout engine from a background thread, which can lead to engine corruption and weird crashes
This Error is telling that You are performing some UI update task from Background Thread and it's not possible to Update UI from background thread so you have to access main Thread and then perform segue.
Objective-C:
dispatch_async(dispatch_get_main_queue(), ^{
// update some UI
// Perform your Segue here
});
Swift:
DispatchQueue.main.async {
// update some UI
// Perform your Segue here
}
Hope it will help you.
Related
I've read that the UI should always be updated on the main thread. However, I'm a little confused when it comes to the preferred method to implement these updates.
I have various functions that perform some conditional checks then the result is used to determine how to update the UI. My question is should the entire function run on the main thread? Should just the UI update? Can / should I run the conditional checks on another thread? Does it depend on what the function does or how fast you want it done?
Example a function that changes the image inside an ImageView without threading:
#IBAction func undoPressed(_ sender: Any) {
if !previousDrawings.isEmpty {
previousDrawings.remove(at: previousDrawings.count - 1)
if let lastDrawing = previousDrawings.last {
topImageView.image = lastDrawing
}
else {
// empty
topImageView.image = nil
}
}
}
Should I be setting topImageView.image on the main thread? Like this:
#IBAction func undoPressed(_ sender: Any) {
if !previousDrawings.isEmpty {
previousDrawings.remove(at: previousDrawings.count - 1)
if let lastDrawing = previousDrawings.last {
DispatchQueue.main.async {
self.topImageView.image = lastDrawing
}
}
else {
DispatchQueue.main.async {
self.topImageView.image = nil
}
}
}
}
Should I be using a background thread for the conditional checks? Like this:
#IBAction func undoPressed(_ sender: Any) {
DispatchQueue.global(qos: .utility).async {
if !previousDrawings.isEmpty {
previousDrawings.remove(at: previousDrawings.count - 1)
if let lastDrawing = previousDrawings.last {
DispatchQueue.main.async {
self.topImageView.image = lastDrawing
}
}
else {
DispatchQueue.main.async {
self.topImageView.image = nil
}
}
}
}
}
If someone could explain what method is preferred and why that would be really helpful.
Back up. Except in special circumstances, all your code is run on the main thread. UIAction methods, for example, are ALWAYS executed on the main thread, as are all the methods defined by UIViewController and it's various subclasses. In fact, you can safely say that UIKit methods are performed on the main thread. Again, your methods will only be called on a background thread in very special circumstances, which are well documented.
You can use GCD to run blocks of code on background threads. In that case, the code is being run on a background thread because you explicitly asked for that to happen.
Some system functions (like URLSession) call their delegate methods/run their completion handlers on background threads by default. Those are well documented. For third party libraries like AlamoFire or FireBase, you'll have to read the documentation, but any code that's called on a background thread should be very well documented because you have to take special precautions for code that runs on a background thread.
The usual reason to use a background thread is so that a long-running task can run to completion without freezing the user interface until it's done.
A common pattern for, example, is using URLSession to read some JSON data from a remote server. The completion handler is called on a background thread since it might take time to parse the data you get back. Once you are done parsing it, though, you'd wrap a call to update the UI in a GCD call to the main thread, since UI changes must be performed on the main thread.
First off, your undoPressed method will be called on the main queue.
In the first set of code, everything will be on the main queue.
In the second set of code, using DispatchQueue.main.async is pointless since the rest of the code is already on the main queue.
So really your only two sensible options are 1 and 3.
Given your code, option 1 is fine. You would only want to use option 3 if the code being run in the background took more than a trivial amount of time to execute. Since the code you have here is trivial and will take virtually no time to execute, there is no point in option 3 here.
So simply use your first set of code and you'll be fine.
Worry about moving code to the background when it need to perform a big loop or calculate a complicated algorithm or perform any sort of network access.
To make it simple, make the calculation and then everything related to that updated calculation that needs to be reflected in the UI should be done from:
DispatchQueue.main.async{ //code }
that is using main thread.
I use DispatchQueue.main.async in UIViewController and i need to cancel async task when dismiss UIViewController
Grand Central Dispatch does not allow tasks to be cancelled from the outside when already running.
You basically have to check inside the asynchronously running task if your view controller still exists.
Assuming your call to GCD is directly in your UIViewController, so self refers to that view controller:
DispatchQueue.global().async { [weak self] in
// Do work
// Check if self still exists:
guard let _ = self else {
return // cancels the task
}
// Continue working
}
As self is only a weak reference to your view controller it will not stop the view controller from getting deallocated when dismissed. When it gets deallocated, self inside your GCD block becomes nil and you known that you can stop your task.
So you just have to check if self is nil every once in a while in your asynchronous block.
Note: Do not perform long running tasks on the main queue but in a global queue or even a private queue. Using the main queue blocks the main thread from performing other work like UI updates so your app freezes.
Let's say I have a ViewController A and a class B.
when I press some button inside A, it calls an IBAction that calls a function B.foo() which returns an Int
B.foo() takes 8~10 seconds to finish and while it runs I'd like to put an Loading... animation on A, and when B.foo() finishes, the animation would stop.
How can I do this? this is an pseudo-code example of what I wish:
#IBAction func buttonPressed(_ sender: UIButton){
UIView.animate(blablabla......)
DO({
self.answer = B.foo()
}, andWhenItFinishesDo: {
self.someone.layer.removeAllAnimation()
})
}
This is a very common problem. One way to solve it would be to use different queues (You can think of them as lines of work that can happen in parallel).
The the basic idea is that once your button is pressed, you show your loading indicator and "dispatch" the long work to a secondary queue, that will operate in the background and do the work. This ensures that your main queue does not block while the work happens and the user interface stays responsive.
The trick is now that you want to get notified when the long work is finished so that you can stop showing the loading indicator (and possibly do even more).
While you actually could use some kind of notification system, there are other, sometimes more appropriate ways. It would actually be even more convenient, if you could just tell the long running function to call you back specifically with code that you provide.
That would be the basic concept of a "completion handler" or "callback".
The whole thing would look something like that:
// Some made up class here
class B {
// This is only static because I do not have an instance of B around.
static func foo(completion: #escaping (Int) -> Void ) {
// The method now does all of its work on a background queue and returns immediately
DispatchQueue.global(qos: .background).async {
// In the background this may take as long as it wants
let result = longCalculation()
// VERY important. The caller of this function might have a certain
// expectation about on which queue the completion handler runs.
// Here I just use the main queue because this is relatively safe.
// You could let the caller provide a queue in the function
// parameters and use it here
DispatchQueue.main.async {
// The completion handler is a function that takes an Int.
// That is exactly what you are providing here
completion(result)
}
}
}
}
#IBAction func buttonPressed(_ sender: UIButton){
self.showLoadingIndicator()
// The foo function now takes a completion handler that gets the result in.
// You have to provide this function here and do something with the result
//
// The completion handler will only be run when the foo function calls it
// (which is after the computation as you can see in the method above.
//
// I am also telling the completion handler here that self should not be
// held on to as the view controller might already have gone away when the
// long calculation finished. The `[weak self]` thingy makes that inside
// your completion handler self is an optional and might be nil (and it
// doesn't hold a strong reference to self, but that's a whole other topic)
B.foo(completion: { [weak self] result in
// Do something with the result
// Since we are called back on the main queue we can also do UI stuff safely
self?.hideLoadingIndicator()
})
}
I hope this helps a bit.
Asynchronous programming can be quite difficult to learn but there are tons of tutorials and examples you can find on this topic.
Hey Hamish you can do this in two simple ways,
First one is using the defer statements provided for functions.
Defer statement block is executed after the functions goes out of scope.
here is a simple example to describe the same.
func print1000000() {
//start displaying the loading indicator
defer {
// hide the loading indicator and move to the next ViewController
let seVC = storyboard?.instantiateViewController(withIdentifier: "SecondVC") as! SecondVC
self.navigationController?.pushViewController(seVC, animated: true)
}
// here goes the task you want to execute such as downloading a file or the one i did here
for index in 0...1000000 {
print(index)
}
}
The above function prints numbers upto 1000000 and then pushes the control to another ViewController
=========================================================================
Second way of doing it is by using closures, as described by Thomas in his answer.
In one of the tutorial from Ray Wenderlich Series, he used dispatch_get_main_queue() inside the completion block as follows
func startFiltrationForRecord(photoDetails: PhotoRecord, indexPath: NSIndexPath){
if let filterOperation = pendingOperations.filtrationsInProgress[indexPath]{
return
}
let filterer = ImageFiltration(photoRecord: photoDetails)
filterer.completionBlock = {
if filterer.cancelled {
return
}
dispatch_async(dispatch_get_main_queue(), {
self.pendingOperations.filtrationsInProgress.removeValueForKey(indexPath)
self.tableView.reloadRowsAtIndexPaths([indexPath], withRowAnimation: .Fade)
})
}
pendingOperations.filtrationsInProgress[indexPath] = filterer
pendingOperations.filtrationQueue.addOperation(filterer)
}
Even though he briefly explained why the completion block is required, I was wondering if anyone could answer the following questions
In my own app, I have completion block in quite a lot of place (with reloading table view code in completion block like his. However, I don't not have a single dispatch_get_main_queue code. Does that mean for all UI related task in completion block, I NEED to add dispatch_get_main_queue?
Yes , you have to use main queue to update tableview. As any UI update should be perform on main thread.
So you must have to reload table on main thread.
dispatch_async(dispatch_get_main_queue(), ^{
// Perform UI operations here
});
It is advisable to perform all calculations, network related functions on secondary thread or background thread, when it comes to perform operation related to UIKit, then simple switch back to main thread using above mention code.
So what i am attempting to do is conceptually very simple however I have not been able to find a solution for it:
I am trying to remove cells from a tableView animated with the:
self.coolTableView?.deleteRowsAtIndexPaths
function, to do this I change the dataSet and perform this action, right after it is done i would like to change the data set again and use:
self.coolTableView?.insertRowsAtIndexPaths
to reflect and animate the second change to the dataset.
The Problem I run into is that if I use:
dispatch_async(dispatch_get_main_queue()) { () -> Void in
//Update tableview
}
they seem to lock each other out, the used memory just keeps skyrocketing and it hangs. I am assuming they are interfering with each other. now my next thought was to change the code to sync so:
dispatch_sync(dispatch_get_main_queue()) { () -> Void in
//Update tableview
}
however the first update hangs and and ceases operation. With the research I have done it sounds like I am putting the execution of the block in the main queue behind my current running application and vuwala, that is why it hangs.
what is the correct way to block execution until I can complete an animation on the main thread so i do not blow up my data source before animations can take place?
The animations in iOS take a block that they can execute when the animation terminates. Try putting operations on coolTableView into a closure (remember about unowned self to not create memory leaks) and pass it as completion closure to your animation.
example:
let someAnimations: () -> Void = {
//some animations
}
let manipulateTableView: (Bool) -> Void = {
isAnimationFinished in
// perform some data manipulation
}
UIView.animateWithDuration(0.5, animations: someAnimations, completion: manipulateTableView)