Logic check. Octave - machine-learning

I am getting different results between the below iterative way and a simple vector way in octave(simple regression). What am I doing wrong in the iterative way ?
Iterative version
sum_val = 0;
for m_val = 1:m,
h = X(m_val,:) * theta;
err_sq = power((h - y(m_val)),2);
sum_val = sum_val + err_sq;
end;
J = (1/2*m)*sum_val;
Vector way:
J = (1/(2*m))*sum(power((X*theta - y),2));

In MATLAB, and so I presume in Octave as well, 1/2*m is not the same as 1/(2*m). This is your source of error.

Related

Image Deconvolution

to practice Wiener deconvolution, I'm trying to perform a simple deconvolution:
def div(img1 ,img2):
res = np.zeros(img2.shape, dtype = 'complex_')
for i in range (img2.shape[0]):
for j in range (img2.shape[0]):
if (np.abs(img2[i][j]) > 0.001):
res[i][j] = 1 / (img2[i][j])
else:
res[i][j] = 0.001
return res
filtre = np.asarray([[1,1,1],
[1,1,1],
[1,1,1]]) * 1/9
filtre_freq = fft2(filtre)
v = signal.convolve(img, filtre)
F = div(1,(filtre_freq))
f = ifft2(F)
res = signal.convolve(v, f)
I am trying to compute the inverse filter in the frequency domain, pass it to the spatial domain and do the convolution with the inverse filter. On paper it's pretty simple, even if I have to manage the divisions by 0 without really knowing how to do it.
But my results seem really inconsistent:
If anyone can enlighten me on this ... Thanks in advance and have a great evening.

Need a vectorized solution in pytorch

I'm doing an experiment using face images in PyTorch framework. The input x is the given face image of size 5 * 5 (height * width) and there are 192 channels.
Objective: To obtain patches of x of patch_size(given as argument).
I have obtained the required result with the help of two for loops. But I want a better-vectorized solution so that the computation cost will be very less than using two for loops.
Used: PyTorch 0.4.1, (12 GB) Nvidia TitanX GPU.
The following is my implementation using two for loops
def extractpatches( x, patch_size): # x is bsx192x5x5
patches = x.unfold( 2, patch_size , 1).unfold(3,patch_size,1)
bs,c,pi,pj, _, _ = patches.size() #bs,192,
cnt = 0
p = torch.empty((bs,pi*pj,c,patch_size,patch_size)).to(device)
s = torch.empty((bs,pi*pj, c*patch_size*patch_size)).to(device)
//Want a vectorized method instead of two for loops below
for i in range(pi):
for j in range(pj):
p[:,cnt,:,:,:] = patches[:,:,i,j,:,:]
s[:,cnt,:] = p[:,cnt,:,:,:].view(-1,c*patch_size*patch_size)
cnt = cnt+1
return s
Thanks for your help in advance.
I think you can try this as following. I used some parts of your code for my experiment and it worked for me. Here l and f are the lists of tensor patches
l = [patches[:,:,int(i/pi),i%pi,:,:] for i in range(pi * pi)]
f = [l[i].contiguous().view(-1,c*patch_size*patch_size) for i in range(pi * pi)]
You can verify the above code using toy input values.
Thanks.

How to find accumulator matrix for line in an image?

I am a newbie in the field of CV and IP. I was writing the HoughTransform algorithm for finding line.I am not getting what is wrong with this code in which i m trying to find the accumulator array
numRowsInBW = size(BW,1);
numColsInBW = size(BW,2);
%length of the diagonal of image
D = sqrt((numRowsInBW - 1)^2 + (numColsInBW - 1)^2);
%number of rows in the accumulator array
nrho = 2*(ceil(D/rhoStep)) + 1;
%number of cols in the accumulator array
ntheta = length(theta);
H = zeros(nrho,ntheta);
%this means the particular pixle is white
%i.e the edge pixle
[allrows allcols] = find(BW == 1);
for i = (1 : size(allrows))
y = allrows(i);
x = allcols(i);
for th = (1 : 180)
d = floor(x*cos(th) - y*sin(th));
H(d+floor(nrho/2),th) += 1;
end
end
I m applying this for a simple image
I m getting this result
But this is expected
I am not able to find the mistake.Please help me.Thanks in advance.
There are several issues with your code. The main issue is here:
ntheta = length(theta);
% ...
for i = (1 : size(allrows))
% ...
for th = (1 : 180)
d = floor(x*cos(th) - y*sin(th));
% ...
th seems to be an angle in degrees. cos(th) is meaningless. Instead, use cosd and sind.
Another issue is that th iterates from 1 to 180, but there is no guarantee that ntheta is 180. So, loop as follows instead:
for i = 1 : size(allrows)
% ...
for j = 1 : numel(theta)
th = theta(j);
% ...
and use th as the angle, and j as the index into H.
Finally, given your image and your expected output, you should apply some edge detection first (Canny, for example). Maybe you already did this?

Backpropagation, all outputs tend to 1

I have this Backpropagation implementation in MATLAB, and have an issue with training it. Early on in the training phase, all of the outputs go to 1. I have normalized the input data(except the desired class, which is used to generate a binary target vector) to the interval [0, 1]. I have been referring to the implementation in Artificial Intelligence: A Modern Approach, Norvig et al.
Having checked the pseudocode against my code(and studying the algorithm for some time), I cannot spot the error. I have not been using MATLAB for that long, so have been trying to use the documentation where needed.
I have also tried different amounts of nodes in the hidden layer and different learning rates (ALPHA).
The target data encodings are as follows: when the target is to classify as, say 2, the target vector would be [0,1,0], say it were 1, [1, 0, 0] so on and so forth. I have also tried using different values for the target, such as (for class 1 for example) [0.5, 0, 0].
I noticed that some of my weights go above 1, resulting in large net values.
%Topological constants
NUM_HIDDEN = 8+1;%written as n+1 so is clear bias is used
NUM_OUT = 3;
%Training constants
ALPHA = 0.01;
TARG_ERR = 0.01;
MAX_EPOCH = 50000;
%Read and normalize data file.
X = normdata(dlmread('iris.data'));
X = shuffle(X);
%X_test = normdata(dlmread('iris2.data'));
%epocherrors = fopen('epocherrors.txt', 'w');
%Weight matrices.
%Features constitute size(X, 2)-1, however size is (X, 2) to allow for
%appending bias.
w_IH = rand(size(X, 2), NUM_HIDDEN)-(0.5*rand(size(X, 2), NUM_HIDDEN));
w_HO = rand(NUM_HIDDEN+1, NUM_OUT)-(0.5*rand(NUM_HIDDEN+1, NUM_OUT));%+1 for bias
%Layer nets
net_H = zeros(NUM_HIDDEN, 1);
net_O = zeros(NUM_OUT, 1);
%Layer outputs
out_H = zeros(NUM_HIDDEN, 1);
out_O = zeros(NUM_OUT, 1);
%Layer deltas
d_H = zeros(NUM_HIDDEN, 1);
d_O = zeros(NUM_OUT, 1);
%Control variables
error = inf;
epoch = 0;
%Run the algorithm.
while error > TARG_ERR && epoch < MAX_EPOCH
for n=1:size(X, 1)
x = [X(n, 1:size(X, 2)-1) 1]';%Add bias for hiddens & transpose to column vector.
o = X(n, size(X, 2));
%Forward propagate.
net_H = w_IH'*x;%Transposed w.
out_H = [sigmoid(net_H); 1]; %Append 1 for bias to outputs
net_O = w_HO'*out_H;
out_O = sigmoid(net_O); %Again, transposed w.
%Calculate output deltas.
d_O = ((targetVec(o, NUM_OUT)-out_O) .* (out_O .* (1-out_O)));
%Calculate hidden deltas.
for i=1:size(w_HO, 1);
delta_weight = 0;
for j=1:size(w_HO, 2)
delta_weight = delta_weight + d_O(j)*w_HO(i, j);
end
d_H(i) = (out_H(i)*(1-out_H(i)))*delta_weight;
end
%Update hidden-output weights
for i=1:size(w_HO, 1)
for j=1:size(w_HO, 2)
w_HO(i, j) = w_HO(i, j) + (ALPHA*out_H(i)*d_O(j));
end
end
%Update input-hidden weights.
for i=1:size(w_IH, 1)
for j=1:size(w_IH, 2)
w_IH(i, j) = w_IH(i, j) + (ALPHA*x(i)*d_H(j));
end
end
out_O
o
%out_H
%w_IH
%w_HO
%d_O
%d_H
end
end
function outs = sigmoid(nets)
outs = zeros(size(nets, 1), 1);
for i=1:size(nets, 1)
if nets(i) < -45
outs(i) = 0;
elseif nets(i) > 45
outs(i) = 1;
else
outs(i) = 1/1+exp(-nets(i));
end
end
end
From what we've established in the comments the only thing that comes in my mind are all recipes written down together in this great NN archive:
ftp://ftp.sas.com/pub/neural/FAQ2.html#questions
First things you could try are:
1) How to avoid overflow in the logistic function? Probably that's the problem - many times I've implemented NNs the problem was with such an overflow.
2) How should categories be encoded?
And more general:
3) How does ill-conditioning affect NN training?
4) Help! My NN won't learn! What should I do?
After the discussion it turns out the problem lies within the sigmoid function:
function outs = sigmoid(nets)
%...
outs(i) = 1/1+exp(-nets(i)); % parenthesis missing!!!!!!
%...
end
It should be:
function outs = sigmoid(nets)
%...
outs(i) = 1/(1+exp(-nets(i)));
%...
end
The lack of parenthesis caused that the sigmoid output was larger than 1 sometimes. That made the gradient calculation incorrect (because it wasn't a gradient of this function). This caused the gradient to be negative. And this caused that the delta for the output layer was most of the time in the wrong direction. After the fix (the after correctly maintaining the error variable - this seems to be missing in your code) all seems to work fine.
Beside that, there are two other main problems with this code:
1) No bias. Without the bias each neuron can only represent a line which crosses the origin. If data is normalized (i.e. values are between 0 and 1), some configurations are inseparable.
2) Lack of guarding against high gradient values (point 1 in my previous answer).

DCT equation in openCV

I write JPEG compression in Scilab (equivalent of MATLAB) using function imdct. In this function is used function DCT from openCV and I don't know which equation is used in dct function.
lenna by imdct
lenna by my_function
You can see lenna by imdct which is internal function and lenna by my_function is my function in scilab.
I add my code in scilab
function vystup = dct_rovnice(vstup)
[M,N] = size(vstup)
for u=1:M
for v=1:N
cos_celkem = 0;
for m=1:M
for n=1:N
pom = double(vstup(m,n));
cos_citatel1 = cos(((2*m) * u * %pi)/(2*M));
cos_citatel2 = cos(((2*n) * v * %pi)/(2*N));
cos_celkem = cos_celkem + (pom * cos_citatel1 * cos_citatel2);
end
end
c_u = 0;
c_v = 0;
if u == 1 then
c_u = 1 / sqrt(2);
else
c_u = 1;
end
if v == 1 then
c_v = 1 / sqrt(2);
else
c_v = 1;
end
vystup(u,v) = (2/sqrt(n*m)) * c_u * c_v * cos_celkem;
end
end
endfunction
function vystup = dct_prevod(vstup)
Y = vstup(:,:,1);
Cb = vstup(:,:,2);
Cr = vstup(:,:,3);
[rows,columns]=size(vstup)
vystup = zeros(rows,columns,3)
for y=1:8:rows-7
for x=1:8:columns-7
blok_Y = Y(y:y+7,x:x+7)
blok_Cb = Cb(y:y+7,x:x+7)
blok_Cr = Cr(y:y+7,x:x+7)
blok_dct_Y = dct_rovnice(blok_Y)
blok_dct_Cb = dct_rovnice(blok_Cb)
blok_dct_Cr = dct_rovnice(blok_Cr)
vystup(y:y+7,x:x+7,1)= blok_dct_Y
vystup(y:y+7,x:x+7,2)= blok_dct_Cb
vystup(y:y+7,x:x+7,3)= blok_dct_Cr
end
end
vystup = uint8(vystup)
endfunction
You can see equation I used
EQUATION
The issue seems to be in the use of different normalization of the resulting coefficients.
The OpenCV library uses this equation for a forward transform (N=8, in your case):
The basis g is defined as
where
(Sorry for the ugly images, but SO does not provide any support for typesetting equations.)
Take care there are several definitions of the dct function (DCT-I, DCT-II, DCT-III and DCT-IV normalized and un-normmalized)
Moreover have you tried the Scilab builtin function dct (from FFTW) which can be applied straightforward to images.

Resources