Docker mount dangling volume - docker

I recently created a mongodb docker instance running on boot2docker on windows.
Unfortunately during my experimenting with kitematic I managed to accidentally remove the volume from the mongo container and can no longer access my data.
The mongo instance seems to have created a new volume with the old volume now remaining dangling (orphaned) and not mounted in any containers.
Is there any way to recover this?

Thanks for your reply it got me on the right track, I managed to start a new mongo container using the following command
docker run -d -v 571284fbe08a3f2b675af299ec14e55550bad623f6316914d465843fa12d6f18:/data/db mongo
where 571284fbe08a3f2b675af299ec14e55550bad623f6316914d465843fa12d6f18 is the dangling volume identified by using
docker volume ls

I usually register the path (in a file) of any data volume container I create, precisely in that case. See "Docker volumes for persistent data - is it enough to pass container path only?" and my script updateDataContainerPath.
What I have seen is that:
any new data volume container comes with its own Mounts.Source path,
you can delete that new folder (which is empty)
you can replace it with the folder of your old data volume container (giving it the same name as the new one, but with the content of the old data volume container)
That will be enough for the new data volume container to give you access to your old data.
In your case, since you didn't register the path of your previous data volume container, you will have to do a search in /mnt/sda1/var/lib/docker/volumes/ for a known file.

This answer is probably just a rewrite of #VonC's, but I feel the need to sum things up a bit. Here are the steps I followed in order to put back a volume that got 'detached' after the container had been removed and recreated.
docker volume ls -f 'dangling=true' to see all detached volumes
docker volume inspect <volume_hash> on each to see where they sit (/var/lib/docker/volumes/ in my case)
Look into each volume's /_data folder to guess who's who.
Then as explained by VonC, just copy the content of the dangling volume into the new one.
(optional) when you are sure you've got back everything you need, docker volume prune will remove all dangling volumes (and therefore make a potential future search for the right dangling volume easier ^^)

Related

How does volume mount from container to host and vice versa work?

docker run -ti --rm -v DataVolume3:/var ubuntu
Lets say I have a volume DataVolume 3 which pulls the contents of /var in the ubuntu container
even after killing this ubuntu container the volume remains and I can use this volume DataVolume3 to mount it to other containers.
This means with the deletion of container the volume mounts are not deleted.
How does this work ?
Does that volume mount mean that it copies the contents of /var into some local directory because this does not look like a symbolic link ?
If I have the container running and I create a file in the container then the same file gets copied to the host path ?
How does this whole process of volume mount from container to host and host to container work ?
Volumes are used for persistent storage and the volumes persists independent of the lifecycle of the container.
We can go through a demo to understand it clearly.
First, let's create a container using the named volumes approach as:
docker run -ti --rm -v DataVolume3:/var ubuntu
This will create a docker volume named DataVolume3 and it can be viewed in the output of docker volume ls:
docker volume ls
DRIVER VOLUME NAME
local DataVolume3
Docker stores the information about these named volumes in the directory /var/lib/docker/volumes/ (*):
ls /var/lib/docker/volumes/
1617af4bce3a647a0b93ed980d64d97746878564b141f30b6110d0818bf32b76 DataVolume3
Next, let's write some data from the ubuntu container at the mounted path var:
echo "hello" > var/file1
root#2b67a89a0050:/# cat /var/file1
hello
We can see this data with cat even after deleting the container:
cat /var/lib/docker/volumes/DataVolume3/_data/file1
hello
Note: Although, we are able to access the volumes like shown above but it not a recommended practice to access volumes data like this.
Now, next time when another container uses the same volume then the data from the volume gets mounted at the container directory specified as part of -v flag.
(*) The location may vary based on OS as pointed by David and probably can be seen by the docker volume inspect command.
Docker has a concept of a named volume. By default the storage for this lives somewhere on your host system and you can't directly access it from outside Docker (*). A named volume has its own lifecycle, it can be independently docker volume rm'd, and if you start another container mounting the same volume, it will have the same persistent content.
The docker run -v option takes some unit of storage, either a named volume or a specific host directory, and mounts it (as in the mount(8) command) in a specific place in the container filesystem. This will hide what was originally in the image and replace it with the volume content.
As you note, if the thing you mount is an empty named volume, it will get populated from the image content at container initialization time. There are some really important caveats on this functionality:
Named volume initialization happens only if the volume is totally empty.
The contents of the named volume never automatically update.
If the volume isn't empty, the volume contents completely replace what's in the image, even if it's changed.
The initialization happens only on native Docker, and not for example in Kubernetes.
The initialization happens only on named volumes, and not for bind-mounted host directories.
With all of these caveats, I'd avoid relying on this functionality.
If you need to mount a volume into a container, assume it will be empty when your entrypoint or the main container command starts. If you need a particular directory layout or file structure there, an entrypoint script can create it; if you're expecting it to hold particular data, keep a copy of it somewhere else in your image and copy it in if it's not already there (or, perhaps, always).
(*) On native Linux you can find a filesystem location for it, but accessing this isn't a best practice. On other OSes this will be hidden inside a virtual machine or other opaque storage. If you need to directly access the data (or inject config files, or read log files) a docker run -v /host/path:/container/path bind mount is a better choice.
Volumes are part of neither the container nor the host. Well, technically everything resides in the host machine. But the docker directories are only accessible by users in "docker" group. The files in these directories are separately managed by docker.
"Volumes are stored in a part of the host filesystem which is managed by Docker (/var/lib/docker/volumes/ on Linux)."
Hence volumes are like the union of files under the docker container and the host itself. Any addition on either end will be added to the volume(/var/lib/docker/volumes), not hard copy, rather something like symbol link
As volumes can be shared across different containers, deleting a container does not cascade to the volumes associated with it.
To remove unused volumes:
docker volume prune .

Docker volume from existent container

I'm kind of stuck,
I have a docker container that is running, and that container runs some elasticsearch inside.
But I forgot to use volume on the first deploy. So my container has lots of data inside, in a single folder in /app/data.
I would like to use the same container but use volume on that folder, without losing data inside...
So it will be possible to rebuild other containers to use the same volume.
Have you some tips to share?
The important thing is not to remove your container, or you'll lose all that data. I think docker cp is your friend here (docs here). Copy the data to the host, then start another container with a volume.
Once you've secured your data, you can stop and remove the first container.

What is the actual advantage of declaring a VOLUME in a Dockerfile? [duplicate]

First of all, I want to make it clear I've done due diligence in researching this topic. Very closely related is this SO question, which doesn't really address my confusion.
I understand that when VOLUME is specified in a Dockerfile, this instructs Docker to create an unnamed volume for the duration of the container which is mapped to the specified directory inside of it. For example:
# Dockerfile
VOLUME ["/foo"]
This would create a volume to contain any data stored in /foo inside the container. The volume (when viewed via docker volume ls) would show up as a random jumble of numbers.
Each time you do docker run, this volume is not reused. This is the key point causing confusion here. To me, the goal of a volume is to contain state persistent across all instances of an image (all containers started from it). So basically if I do this, without explicit volume mappings:
#!/usr/bin/env bash
# Run container for the first time
docker run -t foo
# Kill the container and re-run it again. Note that the previous
# volume would now contain data because services running in `foo`
# would have written data to that volume.
docker container stop foo
docker container rm foo
# Run container a second time
docker run -t foo
I expect the unnamed volume to be reused between the 2 run commands. However, this is not the case. Because I did not explicitly map a volume via the -v option, a new volume is created for each run.
Here's important part number 2: Since I'm required to explicitly specify -v to share persistent state between run commands, why would I ever specify VOLUME in my Dockerfile? Without VOLUME, I can do this (using the previous example):
#!/usr/bin/env bash
# Create a volume for state persistence
docker volume create foo_data
# Run container for the first time
docker run -t -v foo_data:/foo foo
# Kill the container and re-run it again. Note that the previous
# volume would now contain data because services running in `foo`
# would have written data to that volume.
docker container stop foo
docker container rm foo
# Run container a second time
docker run -t -v foo_data:/foo foo
Now, truly, the second container will have data mounted to /foo that was there from the previous instance. I can do this without VOLUME in my Dockerfile. From the command line, I can turn any directory inside the container into a mount to either a bound directory on the host or a volume in Docker.
So my question is: What is the point of VOLUME when you have to explicitly map named volumes to containers via commands on the host anyway? Either I'm missing something or this is just confusing and obfuscated.
Note that all of my assertions here are based on my observations of how docker behaves, as well as what I've gathered from the documentation.
Instructions like VOLUME and EXPOSE are a bit anachronistic. Named volumes as we know them today were introduced in Docker 1.9, almost three years ago.
Before Docker 1.9, running a container whose image had one or more VOLUME instructions (or using the --volume option) was the only way to create volumes for data sharing or persistence. In fact, it used to be a best practice to create data-only containers whose sole purpose was to hold one or more volumes, and then share those volumes with your application containers using the --volumes-from option. Here's some articles that describe this outdated pattern.
Docker Data Containers
Why Docker Data Containers (Volumes!) are Good
Also, check out moby/moby#17798 (Data-only containers obsolete with docker 1.9.0?) where the change from data-only containers to named volumes was discussed.
Today, I consider the VOLUME instruction as an advanced tool that should only be used for specialized cases, and after careful thought. For example, the official postgres image declares a VOLUME at /var/lib/postgresql/data. This can improve the performance of postgres containers out of the box by keeping the database data out of the layered filesystem. Docker doesn't have to search through all the layers of the container image for file requests at /var/lib/postgresql/data.
However, the VOLUME instruction does come at a cost.
Users might not be aware of the unnamed volumes being created, and continuing to take up storage space on their Docker host after containers are removed.
There is no way to remove a volume declared in a Dockerfile. Downstream images cannot add data to paths where volumes exist.
The latter issue results in problems like these.
How to “undeclare” volumes in docker image?
GitLab on Docker: how to persist user data between deployments?
For the GitLab question, someone wants to extend the GitLab image with pre-configured data for testing purposes, but it's impossible to commit that data in a downstream image because of the VOLUME at /var/opt/gitlab in the parent image.
tl;dr: VOLUME was designed for a world before Docker 1.9. Best to just leave it out.

Deploy web app in docker data container vs volume

I'm confused about common consensus that one shouldn't use data containers. I have specific use case that I want to accomplish.
I want to have docker nginx container and behind it some other container with application. To run newest version of my app I want to download ready container from my private docker registry. The application is for now purely static html, javascript something.
So my plan is to create docker image which will hold the files, and will specify a named volume in some /webapp folder. The nginx container will serve this volume. I do not see any other way how to move bunch of files to remote system the "docker containerized" way. Am I not actually creating cursed data container?
Anyway what happens during app containers exchange? When I stop the app container the volume remains accesible, as it is placed on host. When I pull and start new version of app container. The volume will be created again and prefiled with image files stored at the same location, replacing the content on host so the nginx container will server from now new version of the application.Right? What happens when I will reference volume that does not exist yet from the nginx container.
It seem that named values are not automatically filed with the content of the image. As well I'm not sure how to create named volume in docker file as this syntax taken from here doesn't work
FROM training/webapp
VOLUME webapp:/webapp
I think you might want what i have described here https://stackoverflow.com/a/41576040/3625317
The problem with volumes is, that when a container is recreated, not docker-compose down but rather docker-compose pull + up, the new container will not have your "new code stored in the volume" but rather, due to the recycled volume, still the old anon volume. The point is, you will need a anon-volume for the code anyway, since you want it redeployable, not a named volume since you want the code to be exchangeable.
On re-create the anon-volume is not removed, that said, lets say you have the image:v1 right now and you pull image:v2 and then do a docker-compose up. It will recreate your container based on image:v2 - when this finished, you will have a new container, but the code is still from the old container, which was based on image:v1, since the anon-volume has not been replaced, it was re-assigned. docker-compose down && docker-compose up will resolve that for you - but you have to keep this in mind when dealing with your idea. (down removes anon-volumes)
In general, there is a pro / con, see my other post.
Data-containers in general have a other meaning and have been replaced by so called named volumes. Data-containers have been used to establish a volume-mount which is "named" and not based on a anon-volume.
In the past, you had to create a container with a volume, and later use a container-name based mount of this volume ( the container would be the static / name part ), today, you just create a named volume name and mount by this volume-name, no need for a busybox killed after start based container-name based volume mount.

Docker restore volume of removed container?

At the moment I am trying to understand some scenarios concerning data persistence.
The Data Volume Container Pattern sounds great, and there are ways to backup the attached volumes. But what if I have no current backup the DataVolumeContainer gets removed (rather than only stopped)?
From what I understand the volume is physically still present on my host system, but I can't attach it to a new container (since there's no referencing container left).
Is there a possibility to restore that volume (e.g. mount it to a new container) by referencing its volume file or the volume name? (assuming that I named the volume)
but I can't attach it to a new container (since there's no referencing container left).
Is there a possibility to restore that volume (e.g. mount it to a new container) by referencing its volume file or the volume name (assuming that I named the volume)?
Yes there is: if you can find your old volume path, you can, as I mentioned in "Docker mount dangling volume", restore its content in a new (and empty) data volume container by replacing its mounting path content with the one found in the old path.
I prefer saving that path whenever I create a new data volume container.
Its not clear from your text if you have removed the volume with the container - then its gone - otherwise and by default you can find "raw" docker volumes here: /var/lib/docker/volumes/. Check the docs for docker rm -v.
Normally you would create a volume by docker run ... -v hostpath:containerpath ... and then you have your data always at hostpath available, no matter if you remove your container or not.

Resources