Check the battery status with NodeMCU? - lua

I use an ESP8266 dev board from NodeMCU with Lua. I power my chip with two AA batteries, which gives me 3V. See this:
https://www.hackster.io/noelportugal/ifttt-smart-button-e11841
How do I check the battery status using NodeMCU?

With a recent firmware you can use adc.readvdd33(). That should be enough for your case

I read somewhere that adc.readvdd33() was deprecated? Effectively it is for many of the ESP8266 modules available, the docs say, "If the ESP8266 has been configured to use the ADC for sampling the external pin, this function will always return 65535". So that means that any ESP8266 that has an ADC pin (like ESP8266-07 or -12, etc.) has this shunted in firmware.
But by adding a couple of resistors to make a voltage divider, you can still use the ADC pin for this.
[![schematics][1]][1]
[1]: http://i.stack.imgur.com/FEILF.png
Those resistor values will allow it to read 0-12V, as a value between 0-1024. (The voltage at the ADC pin must be less than 1V.)
val = adc.read(0)
Addendum: Adding this to your circuit incurs a power draw of approx. 0.01 milliamps, small but more than nothing. Multiply the values by 1000 to reduce it to infinitesimal. Or use 18 megaohm for r1 and 2 megaohm for r2, which divides the voltage by 10, and (wild guess) drains less current than most if not all batteries will attenuate when disconnected.

Related

FSK demodulation with GNU Radio

I'm trying to demodulate a signal using GNU Radio Companion. The signal is FSK (Frequency-shift keying), with mark and space frequencies at 1200 and 2200 Hz, respectively.
The data in the signal text data generated by a device called GeoStamp Audio. The device generates audio of GPS data fed into it in real time, and it can also decode that audio. I have the decoded text version of the audio for reference.
I have set up a flow graph in GNU Radio (see below), and it runs without error, but with all the variations I've tried, I still can't get the data.
The output of the flow graph should be binary (1s and 0s) that I can later convert to normal text, right?
Is it correct to feed in a wav audio file the way I am?
How can I recover the data from the demodulated signal -- am I missing something in my flow graph?
This is a FFT plot of the wav audio file before demodulation:
This is the result of the scope sink after demodulation (maybe looks promising?):
UPDATE (August 2, 2016): I'm still working on this problem (occasionally), and unfortunately still cannot retrieve the data. The result is a promising-looking string of 1's and 0's, but nothing intelligible.
If anyone has suggestions for figuring out the settings on the Polyphase Clock Sync or Clock Recovery MM blocks, or the gain on the Quad Demod block, I would greatly appreciate it.
Here is one version of an updated flow graph based on Marcus's answer (also trying other versions with polyphase clock recovery):
However, I'm still unable to recover data that makes any sense. The result is a long string of 1's and 0's, but not the right ones. I've tried tweaking nearly all the settings in all the blocks. I thought maybe the clock recovery was off, but I've tried a wide range of values with no improvement.
So, at first sight, my approach here would look something like:
What happens here is that we take the input, shift it in frequency domain so that mark and space are at +-500 Hz, and then use quadrature demod.
"Logically", we can then just make a "sign decision". I'll share the configuration of the Xlating FIR here:
Notice that the signal is first shifted so that the center frequency (middle between 2200 and 1200 Hz) ends up at 0Hz, and then filtered by a low pass (gain = 1.0, Stopband starts at 1 kHz, Passband ends at 1 kHz - 400 Hz = 600 Hz). At this point, the actual bandwidth that's still present in the signal is much lower than the sample rate, so you might also just downsample without losses (set decimation to something higher, e.g. 16), but for the sake of analysis, we won't do that.
The time sink should now show better values. Have a look at the edges; they are probably not extremely steep. For clock sync I'd hence recommend to just go and try the polyphase clock recovery instead of Müller & Mueller; chosing about any "somewhat round" pulse shape could work.
For fun and giggles, I clicked together a quick demo demod (GRC here):
which shows:

Timing Advance in GSM

I have a bunch of questions concerning Timing Advance in GSM :
When is it defined ?
Is it the phone or the BTS who's in charge of defining it's value ?
is it dynamic, does it depends on certain situations ?
Let's say that I figured out a way to get the exact value of the Timing Advance (GSM Layer 1 Transmission level) from the phone's modem :
In order to verify my solution, I'm supposed to put my phone over and over in a situation where he have to use/change the Timing Advance while I log its value...
How can I do that ?
Thanks
In the GSM cellular mobile phone standard, timing advance value corresponds to the length of time a signal takes to reach the base station from a mobile phone. GSM uses TDMA technology in the radio interface to share a single frequency between several users, assigning sequential timeslots to the individual users sharing a frequency. Each user transmits periodically for less than one-eighth of the time within one of the eight timeslots. Since the users are at various distances from the base station and radio waves travel at the finite speed of light, the precise arrival-time within the slot can be used by the base station to determine the distance to the mobile phone. The time at which the phone is allowed to transmit a burst of traffic within a timeslot must be adjusted accordingly to prevent collisions with adjacent users. Timing Advance (TA) is the variable controlling this adjustment.
Technical Specifications 3GPP TS 05.10[1] and TS 45.010[2] describe the TA value adjustment procedures. The TA value is normally between 0 and 63, with each step representing an advance of one bit period (approximately 3.69 microseconds). With radio waves travelling at about 300,000,000 metres per second (that is 300 metres per microsecond), one TA step then represents a change in round-trip distance (twice the propagation range) of about 1,100 metres. This means that the TA value changes for each 550-metre change in the range between a mobile and the base station. This limit of 63 × 550 metres is the maximum 35 kilometres that a device can be from a base station and is the upper bound on cell placement distance.
A continually adjusted TA value avoids interference to and from other users in adjacent timeslots, thereby minimizing data loss and maintaining Mobile QoS (call quality-of-service).
Timing Advance is significant for privacy and communications security, as its combination with other variables can allow GSM localization to find the device's position and tracking the mobile phone user. TA is also used to adjust transmission power in Space-division multiple access systems.
This limited the original range of a GSM cell site to 35km as mandated by the duration of the standard timeslots defined in the GSM specification. The maximum distance is given by the maximum time that the signal from the mobile/BTS needs to reach the receiver of the mobile/BTS on time to be successfully heard. At the air interface the delay between the transmission of the downlink (BTS) and the uplink (mobile) has an offset of 3 timeslots. Until now the mobile station has used a timing advance to compensate for the propagation delay as the distance to the BTS changes. The timing advance values are coded by 6 bits, which gives the theoretical maximum BTS/mobile separation as 35km.
By implementing the Extended Range feature, the BTS is able to receive the uplink signal in two adjacent timeslots instead of one. When the mobile station reaches its maximum timing advance, i.e. maximum range, the BTS expands its hearing window with an internal timing advance that gives the necessary time for the mobile to be heard by the BTS even from the extended distance. This extra advance is the duration of a single timeslot, a 156 bit period. This gives roughly 120 km range for a cell.[3] and is implemented in sparsely populated areas and to reach islands for example.
Hope this Answer the question:)
It's defined everytime the BTS needs to set the define the phone's transmission power, which happens quite often.
It's the core system (BTS in GSM) who totally in charge of defining it's value.
It's very dynamic, and change a lot. Globally, the GSM core system is constantly trying to find the exact distance between the BTS and the MS, so it constantly make a kind of "ping" to calculate it. The result of such operations is generally not that accurate since there are a lot of obstacles between the mobile and the BTS (it's not a direct link in an open space).
Such operations happens a lot, so use your smartphone. Simply.

Contiki OS CC2538: Reducing current / power consumption

I am trying to drive down the current consumption of the contiki os running on the CC2538 development kit.
I would like to operate the device from a CR2032 with a run life of 2 years. To achieve this I would need an average current less than 100uA.
However when I run the following at 3V, I get the following results:
contiki/examples/hello-world = 0.4mA - 2mA
contiki/examples/er-rest-example/er-example-client = 27mA
contiki/examples/er-rest-example/er-example-server = 27mA
thingsquare websocket example = 4mA
I have also designed my own target platform based on the cc2538 and get similar results.
I have read the guide at https://github.com/contiki-os/contiki/blob/648d3576a081b84edd33da05a3a973e209835723/platform/cc2538dk/README.md
and have ensured that in the contiki-conf.h file:
- LPM_CONF_ENABLE 1
- LPM_CONF_MAX_PM 2
Can anyone give me some pointers as to how I can get the current down. It would be most appreciated.
Regards,
Shane
How did you measure the current?
You have to be aware that using a basic ampere meter to measure the current consumption of contiki-os wouldn't give you relevant results. The system is turning on/off the radio at a relative high rate (8Hz by default) in order to perform the CCA. This might not be very easy to catch for an ampere meter.
To have an idea of the current consumption when the device is in deep sleep (and then make calculation to determine the averaged current consumption), I'd rather put the device in the PM state before the program reach the infinite while loop. I used the following code to do that:
lpm_enter();
REG(SYS_CTRL_PMCTL) = SYS_CTRL_PMCTL_PM2;
do { asm("wfi"::); } while(0);
leds_on(LEDS_RED); // should not reach here
while(1){
...
On the CC2538, the CCA check consumes about 10-15mA and last approximately 2ms. When the radio transmit a packet, it consume 25mA. Have a look at this post: Contiki UDP packet transmission duration with CC2538.
Furthermore, to save a little more current, turn off the serial com:
#define CC2538_CONF_QUIET 1
Are you using the SmartRF board? If you want to make proper current measurement with this board, you have to remove every jumpers: P486, P487, P411 and P408. Keep only the jumpers of BTN_SEL and the RESET signals.

Connecting 8051 to an External Ram-EEPROM

When I connect 8051 to an external memory, should I change the RD and WR signals in software or is this made by processor itself when I use the MOVX command?
For example I will read from some location at memory,
;CLR RD
MOV DPTR,#SOMELOCATION
MOVX A,#DPTR
is CLR read command required here or processor just clears that itself by looking if the code is
MOVX A,#DPTR ;or
MOVX #DPTR,A
If the processor has RD and WR lines, then yes, the processor will pulse the write line with timing as described in the data sheet as it executes the "movx #dptr,A" instruction. In addition, ALE would have been pulsed to latch the low byte of the address for the memory.
If for some reason it was necessary to operate the chip write using a clear bit instruction as you state above, you are doing it in the wrong place. You would need to set up address and data THEN pulse write low, then return it high, before any other change in address and data.

how to transmit signal with data rate (3.84 Mbps) using USRP1?

I want to send signal with data rate (3.84 M) using USRP1, but when I transmit the signal it tells me some thing like this in the terminal :
WARNING
Target data rate: 3840000 bps
Actual data rate: 4000000 bps
but I'm trying to implement TX working with the UMTS air interface and I don't want this error in the data rate,
anyone can help?????
Your sample rate is dependent on the master clock rate you are using with your USRP. Your USRP1 has a master clock rate of 64 MHz, and you can only sample at integer decimations of that value, by default, which is why you cannot sample at 3.84 MSps.
UHD is auto-correcting your requested sample rate to a rate that is supported by your USRP, for you. This is actually desirable behavior.
You have two options:
Replace the clock on the USRP1 that will divide down to the rate you want.
Use a rational re-sampler. GNURadio provides this block for you, if you want to use it.
I would suggest using a rational resampler before attempting a hardware mod, which may permanently destroy your USRP if you do it incorrectly.

Resources