What would be the best way to draw a grid like this by using the SpriteKit 2D game engine?
Requirements:
Input programatically the number of columns and rows (5x5, 10x3, 3x4 etc.).
Draw it programmatically using something like SKSpriteNode or SKShapeNode, since just using images of a square like this doesn't seem very efficient to me.
The squares should have a fixed size (let's say each is 40x40).
The grid should be vertically and horizontally centred in the view.
I'm planning to use a SKSpriteNode (from an image) as a player moving in different squares in this grid.
So, I'll save in a 2 dimensional array the central point (x,y) of each square and then move from the player's current position to that position. If you have a better suggestion for this too, I'd like to hear it.
I would appreciate a solution in Swift (preferably 2.1), but Objective-C would do too. Planning on using this only on iPhone devices.
My question is close to this one. Any help is appreciated.
I suggest you implement the grid as a texture of an SKSpriteNode because Sprite Kit will renders the grid in a single draw call. Here's a example of how to do that:
class Grid:SKSpriteNode {
var rows:Int!
var cols:Int!
var blockSize:CGFloat!
convenience init?(blockSize:CGFloat,rows:Int,cols:Int) {
guard let texture = Grid.gridTexture(blockSize: blockSize,rows: rows, cols:cols) else {
return nil
}
self.init(texture: texture, color:SKColor.clear, size: texture.size())
self.blockSize = blockSize
self.rows = rows
self.cols = cols
}
class func gridTexture(blockSize:CGFloat,rows:Int,cols:Int) -> SKTexture? {
// Add 1 to the height and width to ensure the borders are within the sprite
let size = CGSize(width: CGFloat(cols)*blockSize+1.0, height: CGFloat(rows)*blockSize+1.0)
UIGraphicsBeginImageContext(size)
guard let context = UIGraphicsGetCurrentContext() else {
return nil
}
let bezierPath = UIBezierPath()
let offset:CGFloat = 0.5
// Draw vertical lines
for i in 0...cols {
let x = CGFloat(i)*blockSize + offset
bezierPath.move(to: CGPoint(x: x, y: 0))
bezierPath.addLine(to: CGPoint(x: x, y: size.height))
}
// Draw horizontal lines
for i in 0...rows {
let y = CGFloat(i)*blockSize + offset
bezierPath.move(to: CGPoint(x: 0, y: y))
bezierPath.addLine(to: CGPoint(x: size.width, y: y))
}
SKColor.white.setStroke()
bezierPath.lineWidth = 1.0
bezierPath.stroke()
context.addPath(bezierPath.cgPath)
let image = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
return SKTexture(image: image!)
}
func gridPosition(row:Int, col:Int) -> CGPoint {
let offset = blockSize / 2.0 + 0.5
let x = CGFloat(col) * blockSize - (blockSize * CGFloat(cols)) / 2.0 + offset
let y = CGFloat(rows - row - 1) * blockSize - (blockSize * CGFloat(rows)) / 2.0 + offset
return CGPoint(x:x, y:y)
}
}
And here's how to create a grid and add a game piece to the grid
class GameScene: SKScene {
override func didMove(to: SKView) {
if let grid = Grid(blockSize: 40.0, rows:5, cols:5) {
grid.position = CGPoint (x:frame.midX, y:frame.midY)
addChild(grid)
let gamePiece = SKSpriteNode(imageNamed: "Spaceship")
gamePiece.setScale(0.0625)
gamePiece.position = grid.gridPosition(row: 1, col: 0)
grid.addChild(gamePiece)
}
}
}
Update:
To determine which grid square was touched, add this to init
self.isUserInteractionEnabled = true
and this to the Grid class:
override func touchesBegan(_ touches: Set<UITouch>, withEvent event: UIEvent?) {
for touch in touches {
let position = touch.location(in:self)
let node = atPoint(position)
if node != self {
let action = SKAction.rotate(by:CGFloat.pi*2, duration: 1)
node.run(action)
}
else {
let x = size.width / 2 + position.x
let y = size.height / 2 - position.y
let row = Int(floor(x / blockSize))
let col = Int(floor(y / blockSize))
print("\(row) \(col)")
}
}
}
Related
I'm trying to draw rectangles pattern using DrawRect like this:
Currently, I'm doing this like so:
class PatternView: UIView {
override func draw(_ rect: CGRect) {
let context = UIGraphicsGetCurrentContext()
let numberOfBoxesPerRow = 7
let boxSide: CGFloat = rect.width / CGFloat(numberOfBoxesPerRow)
var yOrigin: CGFloat = 0
var xOrigin: CGFloat = 0
var isBlack = true
for y in 0...numberOfBoxesPerRow - 1 {
yOrigin = boxSide * CGFloat(y)
for x in 0...numberOfBoxesPerRow - 1 {
xOrigin = boxSide * CGFloat(x)
let color = isBlack ? UIColor.red : UIColor.blue
isBlack = !isBlack
context?.setFillColor(color.cgColor)
let rectnagle = CGRect(origin: .init(x: xOrigin, y: yOrigin), size: .init(width: boxSide, height: boxSide))
context?.addRect(rectnagle)
context?.fill([rectnagle])
}
}
}
}
It's working but I'm trying to optimize it.
Any help will be highly appreciated!
It's difficult to answer "abstract" questions... which this one is, without knowing if you've run some tests / profiling to determine if this code is slow.
However, a couple things you can do to speed it up...
fill the view with one color (red, in this case) and then draw only the other-color boxes
add rects to the context's path, and fill the path once
Take a look at this modification:
class PatternView: UIView {
override func draw(_ rect: CGRect) {
guard let context = UIGraphicsGetCurrentContext() else { return }
let numberOfBoxesPerRow = 7
let boxSide: CGFloat = rect.width / CGFloat(numberOfBoxesPerRow)
context.setFillColor(UIColor.red.cgColor)
context.fill(bounds)
var r: CGRect = CGRect(origin: .zero, size: CGSize(width: boxSide, height: boxSide))
context.beginPath()
for row in 0..<numberOfBoxesPerRow {
r.origin.x = 0.0
for col in 0..<numberOfBoxesPerRow {
if (row % 2 == 0 && col % 2 == 1) || (row % 2 == 1 && col % 2 == 0) {
context.addRect(r)
}
r.origin.x += boxSide
}
r.origin.y += boxSide
}
context.setFillColor(UIColor.blue.cgColor)
context.fillPath()
}
}
There are other options... create a "pattern" background color... use CAShapeLayers and/or CAReplicatorLayers... for example.
Edit
The reason you are getting "blurry edges" is because, as you guessed, you're drawing on partial pixels.
If we modify the values to use whole numbers (using floor()), we can avoid that. Note that the wholeNumberBoxSide * numBoxes may then NOT be exactly equal to the view's rect, so we'll also want to inset the "grid":
class PatternView: UIView {
override func draw(_ rect: CGRect) {
guard let context = UIGraphicsGetCurrentContext() else { return }
let c1: UIColor = .white
let c2: UIColor = .lightGray
let numberOfBoxesPerRow = 7
// use a whole number
let boxSide: CGFloat = floor(rect.width / CGFloat(numberOfBoxesPerRow))
// inset because numBoxes * boxSide may not be exactly equal to rect
let inset: CGFloat = floor((rect.width - boxSide * CGFloat(numberOfBoxesPerRow)) * 0.5)
context.setFillColor(c1.cgColor)
context.fill(CGRect(x: inset, y: inset, width: boxSide * CGFloat(numberOfBoxesPerRow), height: boxSide * CGFloat(numberOfBoxesPerRow)))
var r: CGRect = CGRect(x: inset, y: inset, width: boxSide, height: boxSide)
context.beginPath()
for row in 0..<numberOfBoxesPerRow {
r.origin.x = inset
for col in 0..<numberOfBoxesPerRow {
if (row % 2 == 0 && col % 2 == 1) || (row % 2 == 1 && col % 2 == 0) {
context.addRect(r)
}
r.origin.x += boxSide
}
r.origin.y += boxSide
}
context.setFillColor(c2.cgColor)
context.fillPath()
}
}
We could also get the scale of the main screen (which will be 2x or 3x) and round the boxSide to half- or one-third points to align with the pixels... if really desired.
Edit 2
Additional modifications... settable colors and number of boxes.
Also, using this extension:
// extension to round CGFloat values to floor/nearest CGFloat
// so, for example
// if f == 10.6
// f.floor(nearest: 0.5) = 10.5
// f.floor(nearest: 0.3333) = 10.3333
// f.round(nearest: 0.5) = 10.5
// f.round(nearest: 0.3333) = 10.66666
extension CGFloat {
func round(nearest: CGFloat) -> CGFloat {
let n = 1/nearest
let numberToRound = self * n
return numberToRound.rounded() / n
}
func floor(nearest: CGFloat) -> CGFloat {
let intDiv = CGFloat(Int(self / nearest))
return intDiv * nearest
}
}
We can round the coordinates to match the screen scale.
PatternView class
class PatternView: UIView {
var c1: UIColor = .white { didSet { setNeedsDisplay() } }
var c2: UIColor = .lightGray { didSet { setNeedsDisplay() } }
var numberOfBoxesPerRow = 21 { didSet { setNeedsDisplay() } }
override func draw(_ rect: CGRect) {
guard let context = UIGraphicsGetCurrentContext() else { return }
let sc: CGFloat = 1.0 // / CGFloat(UIScreen.main.scale)
// use a whole number
let boxSide: CGFloat = (rect.width / CGFloat(numberOfBoxesPerRow)).floor(nearest: sc)
// inset because numBoxes * boxSide may not be exactly equal to rect
let inset: CGFloat = ((rect.width - boxSide * CGFloat(numberOfBoxesPerRow)) * 0.5).floor(nearest: sc)
context.setFillColor(c1.cgColor)
context.fill(CGRect(x: inset, y: inset, width: boxSide * CGFloat(numberOfBoxesPerRow), height: boxSide * CGFloat(numberOfBoxesPerRow)))
var r: CGRect = CGRect(x: inset, y: inset, width: boxSide, height: boxSide)
context.beginPath()
for row in 0..<numberOfBoxesPerRow {
r.origin.x = inset
for col in 0..<numberOfBoxesPerRow {
if (row % 2 == 0 && col % 2 == 1) || (row % 2 == 1 && col % 2 == 0) {
context.addRect(r)
}
r.origin.x += boxSide
}
r.origin.y += boxSide
}
context.setFillColor(c2.cgColor)
context.fillPath()
}
}
Example Controller View class
class PatternTestVC: UIViewController {
let pvA = PatternView()
let pvB = PatternView()
override func viewDidLoad() {
super.viewDidLoad()
view.backgroundColor = .systemBlue
let stack = UIStackView()
stack.axis = .vertical
stack.spacing = 8
stack.translatesAutoresizingMaskIntoConstraints = false
view.addSubview(stack)
let g = view.safeAreaLayoutGuide
NSLayoutConstraint.activate([
stack.leadingAnchor.constraint(equalTo: g.leadingAnchor, constant: 40.0),
stack.trailingAnchor.constraint(equalTo: g.trailingAnchor, constant: -40.0),
stack.centerYAnchor.constraint(equalTo: g.centerYAnchor),
])
[pvA, pvB].forEach { v in
v.backgroundColor = .red
v.numberOfBoxesPerRow = 7
v.heightAnchor.constraint(equalTo: v.widthAnchor).isActive = true
stack.addArrangedSubview(v)
}
}
override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
pvB.numberOfBoxesPerRow += 1
}
}
Sets up two pattern views... both start at 7 boxes... each tap anywhere increments the boxes per row in the bottom view.
Here's how it looks with 21 boxes per row (actual size - so really big image):
and zoomed-in 1600%:
Note the red borders... I set the background of the view to red, so we can see that the grid must be inset to account for the non-whole-number box size.
Edit 3
Options to avoid "blurry edges" ...
Suppose we have a view width of 209 and we want 10 boxes.
That gives us a box width of 20.9 ... which results in "blurry edges" -- so we know we need to get to a whole number.
If we round it, we'll get 21 -- 21 x 10 = 210 which will exceed the width of the view. So we need to round it down (floor()).
So...
Option 1:
Option 2:
Option 3:
I think your first move would be to first draw a big red square, then to draw only the blue ones on top of it. It would spare half the computations, even if it does not change the order of magnitude.
EDIT
Note : it is always the drawing itself that consumes time, rarely the other computations. So that is what we have to minimize.
So, my second move would be to replace drawing squares by creating just one complicated BezierPath, that makes all the squares into just one form, and then display it only once.
I do not know if it is possible to do the whole in just one form, but it is possible to make two columns of blue squares into one form.
EDIT 2
Also, I do not understant why there are two instructions here :
context?.addRect(rectnagle)
context?.fill([rectnagle])
Shouldn't only the second be enough ?
I've been asked to simplify this question, so that's what I'm doing.
I'm struggling in SpriteKit's physic joints (and possibly physic body properties). I tried every single subclass and many configurations but seams like nothing works or I'm doing something wrong.
I'm developing Snake game. User controls head of snake which should move at constant speed ahead and user can turn it clockwise or anticlockwise. All the remaining snake's pieces should follow the head - they should travel exactly the same path that head was some time ago.
I think for this game the Pin joint should be the answer, which anchor point is exactly in the centre between elements.
Unfortunately the result is not perfect. The structure should make the perfect circle, but it doesn't. I'm attaching the code, and gif showing the current effect. Is anyone experience enough to give me any suggestion what properties of physic body and or joints should are apply here for desired effect?
My code:
class GameScene: SKScene {
private var elements = [SKNode]()
override func didMove(to view: SKView) {
physicsWorld.gravity = CGVector(dx: 0, dy: 0)
let dummyTurnNode = SKNode()
dummyTurnNode.position = CGPoint(x: size.width / 2 - 50, y: size.height / 2)
let dummyTurnBody = SKPhysicsBody(circleOfRadius: 1)
dummyTurnBody.isDynamic = false
dummyTurnNode.physicsBody = dummyTurnBody
addChild(dummyTurnNode)
for index in 0..<5 {
let element = SKShapeNode(circleOfRadius: 10)
let body = SKPhysicsBody(circleOfRadius: 10)
body.linearDamping = 0
// body.mass = 0
element.physicsBody = body
element.position = CGPoint(x: size.width / 2, y: size.height / 2 - 30 * CGFloat(index))
elements.append(element)
addChild(element)
let label = SKLabelNode(text: "A")
label.fontSize = 10
label.fontName = "Helvetica-Bold"
element.addChild(label)
if index == 0 {
element.fillColor = UIColor.blue()
body.velocity = CGVector(dx: 0, dy: 30)
let dummyTurnJoint = SKPhysicsJointPin.joint(withBodyA: dummyTurnBody, bodyB: body, anchor: dummyTurnNode.position)
physicsWorld.add(dummyTurnJoint)
} else {
body.linearDamping = 1
element.fillColor = UIColor.red()
let previousElement = elements[index - 1]
let connectingJoint = SKPhysicsJointPin.joint(withBodyA: previousElement.physicsBody!, bodyB: body, anchor: CGPoint(x: size.width / 2, y: size.height / 2 - 30 * CGFloat(index) + CGFloat(15)))
physicsWorld.add(connectingJoint)
}
}
}
override func update(_ currentTime: TimeInterval) {
let head = elements.first!.physicsBody!
var velocity = head.velocity
velocity.normalize()
velocity.multiply(30)
head.velocity = velocity
}
}
extension CGVector {
var rwLength: CGFloat {
let xSq = pow(dx, 2)
let ySq = pow(dy, 2)
return sqrt(xSq + ySq)
}
mutating func normalize() {
dx /= rwLength
dy /= rwLength
}
mutating func multiply(_ factor: CGFloat) {
dx *= factor
dy *= factor
}
}
"All the remaining snake's pieces should follow the head - they should travel exactly the same path that head was some time ago."
You should note that with Physics joints you are likely going to have variance no matter what you do. Even if you have it close to perfect you'll have rounding errors under the hood making the path not exact.
If all the tail parts are equal you can also use a different approach, this is something I've done for a comet tail. Basically the idea is that you have an array of tail objects and per-frame move move the last tail-object always to the same position as the head-object. If the head-object has a higher z-position the tail is drawn below it.
If you need to keep your tail in order you could vary the approach by storing an array of head-positions (per-frame path) and then place the tail objects along that path in your per-frame update call to the snake.
See my code below for example:
These are you head-object variables:
var tails = [SKEmitterNode]()
var tailIndex = 0
In your head init function instantiate the tail objects:
for _ in 0...MAX_TAIL_INDEX
{
if let remnant = SKEmitterNode(fileNamed: "FireTail.sks")
{
p.tails.append(remnant)
}
}
Call the below per-frame:
func drawTail()
{
if tails.count > tailIndex
{
tails[tailIndex].resetSimulation()
tails[tailIndex].particleSpeed = velocity() / 4
tails[tailIndex].emissionAngle = zRotation - CGFloat(M_PI_2) // opposite direction
tails[tailIndex].position = position
tailIndex = tailIndex < MAX_TAIL_INDEX ? tailIndex + 1 : 0
}
}
The resulting effect is actually really smooth when you call it from the scene update() function.
i have triangle around the circle and i created that If my character collides with a brick, then the triangles on the circle replacing another location on the circle.
but i have problem , the triangles rotating when its happening.
This happens when I click the screen (and thats fine) but its rotating.
it need looks like that :
but its look like that :
AddTriangleToCircle func :
func AddTriangleToCircle(Circle: SKShapeNode, Location: CGFloat, Inside: Bool) {
Triangle = SKSpriteNode(imageNamed: "Triangle.png")
Triangle.size = CGSize(width: 30, height: 30)
Triangle.anchorPoint.y = 0
let path = CGPathCreateMutable()
CGPathMoveToPoint(path, nil,298,2)
CGPathAddLineToPoint(path, nil,149,298)
CGPathAddLineToPoint(path, nil,0,0)
CGPathAddLineToPoint(path, nil,298,2)
CGPathCloseSubpath(path)
Triangle.physicsBody = SKPhysicsBody(polygonFromPath: path)
if Inside == true {
// Inside Triangle
Triangle.zRotation = CGFloat(M_PI_2)
} else {
// Outside Triangle
Triangle.zRotation = CGFloat(-M_PI_2)
}
Triangle.position = CGPoint(x:0.5, y:circleRadius)
let rotationSpeed1 = rotationSpeed + Location;
var angleRelatedToCircle1 = angleRelatedToCircle;
angleRelatedToCircle1 -= rotationSpeed1
Triangle.zRotation -= rotationSpeed1
Triangle.position.x = circleRadius * cos(angleRelatedToCircle1)
Triangle.position.y = circleRadius * sin(angleRelatedToCircle1)
//Triangle.physicsBody = SKPhysicsBody(texture:TriangelSKT, size: CGSize(width: 30, height:30))
let centerPoint = CGPointMake(Triangle.size.width / 2 - (Triangle.size.width * Triangle.anchorPoint.x), Triangle.size.height / 2 - (Triangle.size.height * Triangle.anchorPoint.y))
Triangle.physicsBody = SKPhysicsBody(rectangleOfSize: Triangle.size , center: centerPoint)
Triangle.physicsBody?.categoryBitMask = triangleCategory
Triangle.physicsBody?.contactTestBitMask = heroCategory
Triangle.physicsBody?.collisionBitMask = heroCategory
Triangle.physicsBody?.allowsRotation = false
// Set Dynamic to false
Triangle.physicsBody?.dynamic = false
Circle.addChild(Triangle);
}
AddCircle func :
func AddCircle() {
Circle = SKShapeNode(circleOfRadius: circleRadius)
Circle.position = CGPoint(x: self.size.width/2, y: self.size.height/2)
Circle.strokeColor = UIColor.whiteColor()
Circle.lineWidth = 9.5
Circle.fillColor = UIColor(red:0.98, green:0.82, blue:0.32, alpha:1.0)
self.addChild(Circle)
Circle.addChild(BooCharacter)
self.AddTriangleToCircle(Circle, Location: CGFloat(random(1...100)), Inside: false)
self.AddBrickToCircle(Circle, Location: CGFloat(random(1...200)), inside: true)
self.AddTriangleToCircle(Circle, Location: CGFloat(random(1...400)), Inside: false)
}
touchsbegan func :
override func touchesBegan(touches: Set<UITouch>, withEvent event: UIEvent?) {
BooCharacter.zRotation += CGFloat(M_PI)
TapToStart.removeFromParent()
for touch in touches {
let location = touch.locationInNode(self)
}
initializeValues()
}
initializeValues func :
func initializeValues() {
self.removeAllChildren()
AddCircle()
}
So what you need is to find two points on a circle based on an angle.
A point on a circle is found this way -
func pointOnCircle(radius:CGFloat, angleInRadians:CGFloat, circleCenter:CGPoint) -> CGPoint {
return CGPoint(
x:circleCenter.x - radius * cos(angleInRadians),
y:circleCenter.y - radius * sin(angleInRadians)
)
}
Don't forget to convert from degrees to radians if needed.
You need to define an angle (which defines the triangle's size) and a starting point on the circle.
Use that angle to find the other base point of the triangle on the circle with the formula, and use it again only with a smaller angle (half of the original angle probably would do fine) and a larger radius, since the third point of the triangle can be thought of as if it is located on a larger circle (the red border circle), which shares the same center point as your original circle (the green one)
I've been wracking my brain for a couple of days trying to come up with a way to move a player from there current position to new position using Swift and SpriteKit. Sounds relatively easy.
Now, I know I can use a CGPath and a SKAction to move the player along a path, but what I need to know is how to create the path for the player to move along.
I need the player to move through a predetermined radius as it turns towards the new point first as it moves, let me demonstrate...
So, the red circle is the player and their current orientation, the large circle is the turn radius and the red crosses are possible points where the player wants to move to (obviously you'd only have one at any point in time, but the idea is demonstrate the difference in movement between one possible point and another)
Also, the player could move left or right depending in which ever path is shortest to the target point.
What I tried (sorry the list is kind of short)...
Basically, I know the current position/orientation of the player; I know the radius of the turn circle and I know the point I want to move to. I need to calculate the arc through which the player will need to initially move through to orientate themselves to the new point (tacking on a CGPathAddLineToPoint to the end of the arc should be trivial)
Other then spending copious amounts of time reading through the docs, Googling, reading blog posts and tutorials, I also tried looping through a series of angles from a start angle through a given iteration level (+/-0.5 degrees for example) and calculating the angle between the current point and next point on the circle and comparing that to the angle of the current point to the target point and basically selecting the angle with the lowest difference/delta ...
So, the two red circles represent two points on the circle, the blue line represents the angle between them, the green line represents the angle from the first point to the target point.
Let's just say, that while that might possibly work, I'm kind of horrified at the idea and hope that it might be possible to come up with a better/faster solution.
I'm not sure if something like CGPathAddArcToPoint would help, as it would create an arc from my players current position to the target point, rather then allow the player to move through a turning circle.
Once the player leaves the turning circle, I'm not particular fussed if the move in a straight line or not (ie they could curve slightly to the target point), but I'm currently focused on trying to calculate the required arc needed to get the player started.
Sorry, my maths is pretty poor, so, please, be nice
The code "currently" looks something like (a complete mess)
func pointTowards(point thePoint: CGPoint) {
// Need to calculate the direction of the turn
//let angle = atan2(thePoint.y - self.position.y, thePoint.x - self.position.x) - CGFloat(180.0.toRadians());
let angle = angleBetween(startPoint: self.position, endPoint: thePoint) - CGFloat(180.0.toRadians())
if (self.zRotation < 0) {
// self.zRotation
// self.zRotation = self.zRotation + M_PI * 2;
}
let rotateTo: SKAction = SKAction.rotateToAngle(angle, duration: 1, shortestUnitArc: true)
rotateTo.timingMode = SKActionTimingMode.EaseInEaseOut
self.runAction(rotateTo)
let offset = CGPoint(x: rotorBlur.position.x, y: rotorBlur.position.y + (rotorBlur.size.width / 2))
let radius = rotorBlur.size.width / 2.0
var points: [AnglesAndPoints] = self.pointsOnCircleOf(
radius: radius,
offset: offset);
let centerPoint = CGPoint(x: offset.x + radius, y: offset.y + radius)
var minAngle = CGFloat.max
var minDelta = CGFloat.max
for var p: Int = 1; p < points.count; p++ {
let p1 = points[p - 1].point
let p2 = points[p].point
let point = angleBetween(startPoint: p1, endPoint: p2) - CGFloat(180.0.toRadians())
let target = angleBetween(startPoint: p1, endPoint: thePoint) - CGFloat(180.0.toRadians())
let delta = target - point
if delta < minDelta {
minDelta = delta
minAngle = points[p - 1].angle
}
}
println("projected: \(minAngle); delta = \(minDelta)")
if let pathNode = pathNode {
pathNode.removeFromParent()
}
//points = self.pointsOnCircleOf(
// radius: rotorBlur.size.width / 2.0,
// offset: CGPoint(x: 0, y: rotorBlur.size.width / 2));
let path = CGPathCreateMutable()
CGPathAddArc(
path,
nil,
0,
rotorBlur.size.width / 2,
rotorBlur.size.width / 2,
CGFloat(-180.0.toRadians()),
minAngle,
true)
pathNode = SKShapeNode()
pathNode?.path = path
pathNode?.lineWidth = 1.0
pathNode?.strokeColor = .lightGrayColor()
addChild(pathNode!)
}
func pointsOnCircleOf(radius r : CGFloat, offset os: CGPoint) -> [AnglesAndPoints] {
var points: [AnglesAndPoints] = []
let numPoints = 360.0 * 2.0
let delta = 360.0 / numPoints
for var degrees: Double = 0; degrees < numPoints; degrees += delta {
var point: CGPoint = pointOnCircle(angle: CGFloat(degrees.toRadians()), radius: r)
point = CGPoint(x: point.x + os.x, y: point.y + os.y)
points.append(AnglesAndPoints(angle: CGFloat(degrees.toRadians()), point: point))
}
return points
}
func pointOnCircle(angle radians:CGFloat, radius theRadius:CGFloat) -> CGPoint {
return CGPointMake((cos(radians) * theRadius),
(sin(radians) * theRadius));
}
func angleBetween(startPoint p1: CGPoint, endPoint p2: CGPoint) -> CGFloat {
return atan2(p2.y - p1.y, p2.x - p1.x) //- CGFloat(180.0.toRadians());
}
Basically, I went about pre-calculating the points on a circle of a given radius with a given offset, which is just horrible and if I had the time right now, would re-work it so that the point was dynamically created (or I could cache the values some how and simply translate them), but as I said, this was such a horrible idea I really wanted to find a different way and abandon this approach
I'm pretty sure that the current code doesn't take into the players current orientation and it should be supplying a start angle and direction (counter/clockwise) in which to iterate, but I've gotten to the point I'd like to see if their is simply a better solution then this before trying to fix any more issues with it
Funny, I actually have motion in my game almost exactly as you described except that instead of always going clock-wise when on the right side and counter-clock when on the left, it will pick the closer path.
So I grabbed some of the code and modified it sightly to fit your description. It will move left when the target point is to the left of the player, else it will move right. You can also set the speed of the node, as well as the radius and position of the "orbit."
My implementation however does not use SKActions and paths to move. Everything is done dynamically in real-time which allows for collisions with the moving objects and greater motion control. However if you absolutely need to use paths with SKActions let me know and I'll try to come up with a solution. Essentially what it comes down to is finding the arc to the tangent points (which the code already does to an extent).
The physics calculations come from my two answerers here, and here.
The way the implementation works is that it first determines the final destination point, as well as the angular distance to the best tangent point using a secondary circle to find the tangent points. Then using centripetal motion, the node moves along the path to the tangent point and then switches to linear motion to finish moving to the end destination.
Below is the code for the GameScene:
import SpriteKit
enum MotionState { case None, Linear, Centripetal }
class GameScene: SKScene {
var node: SKShapeNode!
var circle: SKShapeNode!
var angularDistance: CGFloat = 0
var maxAngularDistance: CGFloat = 0
let dt: CGFloat = 1.0/60.0 //Delta Time
var centripetalPoint = CGPoint() //Point to orbit.
let centripetalRadius: CGFloat = 60 //Radius of orbit.
var motionState: MotionState = .None
var invert: CGFloat = 1
var travelPoint: CGPoint = CGPoint() //The point to travel to.
let travelSpeed:CGFloat = 200 //The speed at which to travel.
override func didMoveToView(view: SKView) {
physicsWorld.gravity = CGVector(dx: 0, dy: 0)
circle = SKShapeNode(circleOfRadius: centripetalRadius)
circle.strokeColor = SKColor.redColor()
circle.hidden = true
self.addChild(circle)
}
func moveToPoint(point: CGPoint) {
travelPoint = point
motionState = .Centripetal
//Assume clockwise when point is to the right. Else counter-clockwise
if point.x > node.position.x {
invert = -1
//Assume orbit point is always one x radius right from node's position.
centripetalPoint = CGPoint(x: node.position.x + centripetalRadius, y: node.position.y)
angularDistance = CGFloat(M_PI)
} else {
invert = 1
//Assume orbit point is always one x radius left from node's position.
centripetalPoint = CGPoint(x: node.position.x - centripetalRadius, y: node.position.y)
angularDistance = 0
}
}
final func calculateCentripetalVelocity() {
let normal = CGVector(dx:centripetalPoint.x + CGFloat(cos(self.angularDistance))*centripetalRadius,dy:centripetalPoint.y + CGFloat(sin(self.angularDistance))*centripetalRadius);
let period = (CGFloat(M_PI)*2.0)*centripetalRadius/(travelSpeed*invert)
self.angularDistance += (CGFloat(M_PI)*2.0)/period*dt;
if (self.angularDistance>CGFloat(M_PI)*2)
{
self.angularDistance = 0
}
if (self.angularDistance < 0) {
self.angularDistance = CGFloat(M_PI)*2
}
node.physicsBody!.velocity = CGVector(dx:(normal.dx-node.position.x)/dt ,dy:(normal.dy-node.position.y)/dt)
//Here we check if we are at the tangent angle. Assume 4 degree threshold for error.
if abs(maxAngularDistance-angularDistance) < CGFloat(4*M_PI/180) {
motionState = .Linear
}
}
final func calculateLinearVelocity() {
let disp = CGVector(dx: travelPoint.x-node.position.x, dy: travelPoint.y-node.position.y)
let angle = atan2(disp.dy, disp.dx)
node.physicsBody!.velocity = CGVector(dx: cos(angle)*travelSpeed, dy: sin(angle)*travelSpeed)
//Here we check if we are at the travel point. Assume 15 point threshold for error.
if sqrt(disp.dx*disp.dx+disp.dy*disp.dy) < 15 {
//We made it to the final position! Code that happens after reaching the point should go here.
motionState = .None
println("Node finished moving to point!")
}
}
override func update(currentTime: NSTimeInterval) {
if motionState == .Centripetal {
calculateCentripetalVelocity()
} else if motionState == .Linear {
calculateLinearVelocity()
}
}
func calculateMaxAngularDistanceOfBestTangent() {
let disp = CGVector(dx: centripetalPoint.x - travelPoint.x, dy: centripetalPoint.y - travelPoint.y)
let specialCirclePos = CGPoint(x: (travelPoint.x+centripetalPoint.x)/2.0, y: (travelPoint.y+centripetalPoint.y)/2.0)
let specialCircleRadius = sqrt(disp.dx*disp.dx+disp.dy*disp.dy)/2.0
let tangentPair = getPairPointsFromCircleOnCircle(centripetalPoint, radiusA: centripetalRadius, pointB: specialCirclePos, radiusB: specialCircleRadius)
let tangentAngle1 = (atan2(tangentPair.0.y - centripetalPoint.y,tangentPair.0.x - centripetalPoint.x)+CGFloat(2*M_PI))%CGFloat(2*M_PI)
let tangentAngle2 = (atan2(tangentPair.1.y - centripetalPoint.y,tangentPair.1.x - centripetalPoint.x)+CGFloat(2*M_PI))%CGFloat(2*M_PI)
if invert == -1 {
maxAngularDistance = tangentAngle2
} else {
maxAngularDistance = tangentAngle1
}
}
//Not mine, modified algorithm from https://stackoverflow.com/q/3349125/2158465
func getPairPointsFromCircleOnCircle(pointA: CGPoint, radiusA: CGFloat, pointB: CGPoint, radiusB: CGFloat) -> (CGPoint,CGPoint) {
let dX = (pointA.x - pointB.x)*(pointA.x - pointB.x)
let dY = (pointA.y - pointB.y)*(pointA.y - pointB.y)
let d = sqrt(dX+dY)
let a = (radiusA*radiusA - radiusB*radiusB + d*d)/(2.0*d);
let h = sqrt(radiusA*radiusA - a*a);
let pointCSub = CGPoint(x:pointB.x-pointA.x,y:pointB.y-pointA.y)
let pointCScale = CGPoint(x: pointCSub.x*(a/d), y: pointCSub.y*(a/d))
let pointC = CGPoint(x: pointCScale.x+pointA.x, y: pointCScale.y+pointA.y)
let x3 = pointC.x + h*(pointB.y - pointA.y)/d;
let y3 = pointC.y - h*(pointB.x - pointA.x)/d;
let x4 = pointC.x - h*(pointB.y - pointA.y)/d;
let y4 = pointC.y + h*(pointB.x - pointA.x)/d;
return (CGPoint(x:x3, y:y3), CGPoint(x:x4, y:y4));
}
override func touchesBegan(touches: Set<NSObject>, withEvent event: UIEvent) {
let touchPos = (touches.first! as! UITouch).locationInNode(self)
node = SKShapeNode(circleOfRadius: 10)
node.position = CGPoint(x: self.size.width/2.0, y: self.size.height/2.0)
node.physicsBody = SKPhysicsBody(circleOfRadius: 10)
self.addChild(node)
moveToPoint(touchPos)
calculateMaxAngularDistanceOfBestTangent() //Expensive!
circle.hidden = false
circle.position = centripetalPoint
}
}
Note that the circle you see is another node I added to the scene to make the motion more visible; you can easily just remove it. When debugging you might also find it useful to add nodes at the tangent points. The tangentPair tuple inside the calculateMaxAngularDistanceOfBestTangent function contains the two tangent points.
Additionally note that finding the tangent points/angles is expensive but it only happens each time you need to move to a new point. If however you game requires constantly moving to a new point, using this algorithm repeatedly on many nodes can be costly (always profile before assuming this though). Another way to check when to move from centripetal motion to linear motion is to check if the velocity vector is approaching the end position as shown below. This is less accurate but allows you to remove the calculateMaxAngularDistanceOfBestTangent function entirely.
let velAngle = atan2(node.physicsBody!.velocity.dy,node.physicsBody!.velocity.dx)
let disp = CGVector(dx: travelPoint.x-node.position.x, dy: travelPoint.y-node.position.y)
let dispAngle = atan2(disp.dy,disp.dx)
//Here we check if we are at the tangent angle. Assume 4 degree threshold for error.
if velAngle != 0 && abs(velAngle - dispAngle) < CGFloat(4*M_PI/180) {
motionState = .Linear
}
Lastly let me know if you need to use paths with SKActions, regardless I think I will update this last part showing how this is done (unless someone beats me to it! And as I mentioned earlier the code I posted does this to an extent.) I don't have time to right now but hopefully I get a chance to soon! I hope something mentioned in this answer helps you. Good luck with your game.
Update including SKActions
The code below shows getting the same exact effect except this time using SKActions to animate a CGPath to the tangent angle then to the final destination point. It is much simpler as there is no longer a manual calculation of centripetal and linear motion, however because it is an animation you lose the dynamic real-time motion control that the solution above provides.
class GameScene: SKScene {
var centripetalPoint = CGPoint() //Point to orbit.
let centripetalRadius: CGFloat = 60 //Radius of orbit.
var travelPoint: CGPoint = CGPoint() //The point to travel to.
var travelDuration: NSTimeInterval = 1.0 //The duration of action.
var node: SKShapeNode!
var circle: SKShapeNode!
override func didMoveToView(view: SKView) {
physicsWorld.gravity = CGVector(dx: 0, dy: 0)
circle = SKShapeNode(circleOfRadius: centripetalRadius)
circle.strokeColor = SKColor.redColor()
circle.hidden = true
self.addChild(circle)
}
//Not mine, modified algorithm from https://stackoverflow.com/q/3349125/2158465
func getPairPointsFromCircleOnCircle(pointA: CGPoint, radiusA: CGFloat, pointB: CGPoint, radiusB: CGFloat) -> (CGPoint,CGPoint) {
let dX = (pointA.x - pointB.x)*(pointA.x - pointB.x)
let dY = (pointA.y - pointB.y)*(pointA.y - pointB.y)
let d = sqrt(dX+dY)
let a = (radiusA*radiusA - radiusB*radiusB + d*d)/(2.0*d);
let h = sqrt(radiusA*radiusA - a*a);
let pointCSub = CGPoint(x:pointB.x-pointA.x,y:pointB.y-pointA.y)
let pointCScale = CGPoint(x: pointCSub.x*(a/d), y: pointCSub.y*(a/d))
let pointC = CGPoint(x: pointCScale.x+pointA.x, y: pointCScale.y+pointA.y)
let x3 = pointC.x + h*(pointB.y - pointA.y)/d;
let y3 = pointC.y - h*(pointB.x - pointA.x)/d;
let x4 = pointC.x - h*(pointB.y - pointA.y)/d;
let y4 = pointC.y + h*(pointB.x - pointA.x)/d;
return (CGPoint(x:x3, y:y3), CGPoint(x:x4, y:y4));
}
func moveToPoint(point: CGPoint) {
travelPoint = point
//Assume clockwise when point is to the right. Else counter-clockwise
if point.x > node.position.x {
centripetalPoint = CGPoint(x: node.position.x + centripetalRadius, y: node.position.y)
} else {
centripetalPoint = CGPoint(x: node.position.x - centripetalRadius, y: node.position.y)
}
let disp = CGVector(dx: centripetalPoint.x - travelPoint.x, dy: centripetalPoint.y - travelPoint.y)
let specialCirclePos = CGPoint(x: (travelPoint.x+centripetalPoint.x)/2.0, y: (travelPoint.y+centripetalPoint.y)/2.0)
let specialCircleRadius = sqrt(disp.dx*disp.dx+disp.dy*disp.dy)/2.0
let tangentPair = getPairPointsFromCircleOnCircle(centripetalPoint, radiusA: centripetalRadius, pointB: specialCirclePos, radiusB: specialCircleRadius)
let tangentAngle1 = (atan2(tangentPair.0.y - centripetalPoint.y,tangentPair.0.x - centripetalPoint.x)+CGFloat(2*M_PI))%CGFloat(2*M_PI)
let tangentAngle2 = (atan2(tangentPair.1.y - centripetalPoint.y,tangentPair.1.x - centripetalPoint.x)+CGFloat(2*M_PI))%CGFloat(2*M_PI)
let path = CGPathCreateMutable()
CGPathMoveToPoint(path, nil, node.position.x, node.position.y)
if travelPoint.x > node.position.x {
CGPathAddArc(path, nil, node.position.x+centripetalRadius, node.position.y, centripetalRadius, CGFloat(M_PI), tangentAngle2, true)
} else {
CGPathAddArc(path, nil, node.position.x-centripetalRadius, node.position.y, centripetalRadius, 0, tangentAngle1, false)
}
CGPathAddLineToPoint(path, nil, travelPoint.x, travelPoint.y)
let action = SKAction.followPath(path, asOffset: false, orientToPath: false, duration: travelDuration)
node.runAction(action)
}
override func touchesBegan(touches: Set<NSObject>, withEvent event: UIEvent) {
let touchPos = (touches.first! as! UITouch).locationInNode(self)
node = SKShapeNode(circleOfRadius: 10)
node.position = CGPoint(x: self.size.width/2.0, y: self.size.height/2.0)
self.addChild(node)
moveToPoint(touchPos)
circle.hidden = false
circle.position = centripetalPoint
}
}
I've been racking my brain and searching here and all over to try to find out how to generate a random position on screen to spawn a circle. I'm hoping someone here can help me because I'm completely stumped. Basically, I'm trying to create a shape that always spawns in a random spot on screen when the user touches.
override func touchesBegan(touches: Set<NSObject>, withEvent event: UIEvent) {
let screenSize: CGRect = UIScreen.mainScreen().bounds
let screenHeight = screenSize.height
let screenWidth = screenSize.width
let currentBall = SKShapeNode(circleOfRadius: 100)
currentBall.position = CGPointMake(CGFloat(arc4random_uniform(UInt32(Float(screenWidth)))), CGFloat(arc4random_uniform(UInt32(Float(screenHeight)))))
self.removeAllChildren()
self.addChild(currentBall)
}
If you all need more of my code, there really isn't any more. But thank you for whatever help you can give! (Just to reiterate, this code kind of works... But a majority of the spawned balls seem to spawn offscreen)
The problem there is that you scene is bigger than your screen bounds
let viewMidX = view!.bounds.midX
let viewMidY = view!.bounds.midY
print(viewMidX)
print(viewMidY)
let sceneHeight = view!.scene!.frame.height
let sceneWidth = view!.scene!.frame.width
print(sceneWidth)
print(sceneHeight)
let currentBall = SKShapeNode(circleOfRadius: 100)
currentBall.fillColor = .green
let x = view!.scene!.frame.midX - viewMidX + CGFloat(arc4random_uniform(UInt32(viewMidX*2)))
let y = view!.scene!.frame.midY - viewMidY + CGFloat(arc4random_uniform(UInt32(viewMidY*2)))
print(x)
print(y)
currentBall.position = CGPoint(x: x, y: y)
view?.scene?.addChild(currentBall)
self.removeAllChildren()
self.addChild(currentBall)
First: Determine the area that will be valid. It might not be the frame of the superview because perhaps the ball (let's call it ballView) might be cut off. The area will likely be (in pseudocode):
CGSize( Width of the superview - width of ballView , Height of the superview - height of ballView)
Once you have a view of that size, just place it on screen with the origin 0, 0.
Secondly: Now you have a range of valid coordinates. Just use a random function (like the one you are using) to select one of them.
Create a swift file with the following:
extension Int
{
static func random(range: Range<Int>) -> Int
{
var offset = 0
if range.startIndex < 0 // allow negative ranges
{
offset = abs(range.startIndex)
}
let mini = UInt32(range.startIndex + offset)
let maxi = UInt32(range.endIndex + offset)
return Int(mini + arc4random_uniform(maxi - mini)) - offset
}
}
And now you can specify a random number as follows:
Int.random(1...1000) //generate a random number integer somewhere from 1 to 1000.
You can generate the values for the x and y coordinates now using this function.
Given the following random generators:
public extension CGFloat {
public static var random: CGFloat { return CGFloat(arc4random()) / CGFloat(UInt32.max) }
public static func random(between x: CGFloat, and y: CGFloat) -> CGFloat {
let (start, end) = x < y ? (x, y) : (y, x)
return start + CGFloat.random * (end - start)
}
}
public extension CGRect {
public var randomPoint: CGPoint {
var point = CGPoint()
point.x = CGFloat.random(between: origin.x, and: origin.x + width)
point.y = CGFloat.random(between: origin.y, and: origin.y + height)
return point
}
}
You can paste the following into a playground:
import XCPlayground
import SpriteKit
let view = SKView(frame: CGRect(x: 0, y: 0, width: 500, height: 500))
XCPShowView("game", view)
let scene = SKScene(size: view.frame.size)
view.presentScene(scene)
let wait = SKAction.waitForDuration(0.5)
let popIn = SKAction.scaleTo(1, duration: 0.25)
let popOut = SKAction.scaleTo(0, duration: 0.25)
let remove = SKAction.removeFromParent()
let popInAndOut = SKAction.sequence([popIn, wait, popOut, remove])
let addBall = SKAction.runBlock { [unowned scene] in
let ballRadius: CGFloat = 25
let ball = SKShapeNode(circleOfRadius: ballRadius)
var popInArea = scene.frame
popInArea.inset(dx: ballRadius, dy: ballRadius)
ball.position = popInArea.randomPoint
ball.xScale = 0
ball.yScale = 0
ball.runAction(popInAndOut)
scene.addChild(ball)
}
scene.runAction(SKAction.repeatActionForever(SKAction.sequence([addBall, wait])))
(Just make sure to also paste in the random generators, too, or to copy them to the playground's Sources, as well as to open the assistant editor so you can see the animation.)