Suppose we have 10000 text file and We would like to classify as political ,health,weather,sports,Science ,Education,.........
I need training data set for classification of text documents and I am Naive Bayes classification Algorithm. Anyone can help to get data sets .
OR
Is there any another way to get classification done..I am new at Machine Learning Please explain your answer completely.
Example:
**Sentence** **Output**
1) Obama won election. ----------------------------------------------->political
2) India won by 10 wickets ---------------------------------------------->sports
3) Tobacco is more dangerous --------------------------------------------->Health
4) Newtons laws of motion can be applied to car -------------->science
Any way to classify these sentences into their respective categories
Have you tried to google it? There are tons and tons of datasets for text categorization. The classical one is Reuters-21578 (https://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection), another famous one and mentioned almost in each ML book is 20 newsgroup: http://web.ist.utl.pt/acardoso/datasets/
But there are lots of other, one google query away from you. Just load them, slightly adjust if needed and train your classifier on that datasets.
Related
In normal case I had tried out naive bayes and linear SVM earlier to classify data related to certain specific type of comments related to some page where I had access to training data manually labelled and classified as spam or ham.
Now I am being told to check if there are any ways to classify comments as spam where we don't have a training data. Something like getting two clusters for data which will be marked as spam or ham given any data.
I need to know certain ways to approach this problem and what would be a good way to implement this.
I am still learning and experimenting . Any help will be appreciated
Are the new comments very different from the old comments in terms of vocabulary? Because words is almost everything the classifiers for this task look at.
You always can try using your old training data and apply the classifier to the new domain. You would have to label a few examples from your new domain in order to measure performance (or better, let others do the labeling in order to get more reliable results).
If this doesn't work well, you could try domain adaptation or look for some datasets more similar to your new domain, using Google or looking at this spam/ham corpora.
Finally, there may be some regularity or pattern in your new setting, e.g. downvotes for a comment, which may indicate spam/ham. In such cases, you could compile training data yourself. This would them be called distant supervision (you can search for papers using this keyword).
The best I could get to was this research work which mentions about active learning. So what I came up with is that I first performed Kmeans clustering and got the central clusters (assuming 5 clusters I took 3 clusters descending ordered by length) and took 1000 msgs from each. Then I would assign it to be labelled by the user. The next process would be training using logistic regression on the labelled data and getting the probabilities of unlabelled data and then if I have probability close to 0.5 or in range of 0.4 to 0.6 which means it is uncertain I would assign it to be labelled and then the process would continue.
I am trying to do document classification. But I am really confused between feature selections and tf-idf. Are they the same or two different ways of doing classification?
Hope somebody can tell me? I am not really sure that my question will make sense to you guys.
Yes, you are confusion a lot of things.
Feature selection is the abstract term for choosing features (0 or 1). Stopword removal can be seen as feature selection.
TF is one method of extracting features from text: counting words.
IDF is one method of assigning weights to features.
Neither of them is classification... they are popular for text classification, but they are even more popular for information retrieval, which is not classification...
However, many classifiers work on numeric data, so the common process is to 1. Extract features (e.g.: TF) 2. Select features (e.g. remove stopwords) 3. Weight features (e.g. IDF) 4. Train a classifier on the resulting numerical vectors. 5. Predict the classes of new/unlabeled documents.
Taking a look at this explanation may help a lot when it comes to understanding text classifiers.
TF-IDF is a good way to find a document that answers a given query, but it does not necessarily assigns documents with classes.
Examples that may be helpful:
1) You have a bunch of documents with subjects ranging from politics, economics, computer science and the arts. The documents belonging to each subject are separated into the appropriate directories for each subject (you have a labeled dataset). Now, you received a new document whose subject you do not know. In which directory should it be stored? A classifier can answer this question from the documents that are already labeled.
2) Now, you received a query regarding computer science. For instance, you received the query "Good methods for finding textual similarity". Which document in the directory of computer science can provide the best response to that query? TF-IDF would be a good approach to figure that out.
So, when you are classifying documents, you are trying to make a decision about whether a document is a member of a particular class (like, say, 'about birds' or 'not about birds').
Classifiers predict the value of the class given a set of features. A good set of features will be highly discriminative - they will tell you a lot about whether the document is of one class or another.
Tf-idf (term frequency inverse document frequency) is a particular feature that seems to be discriminative for document classification tasks. There are others, like word counts (tf or term frequency) or whether a regexp matches the text or what have you.
Feature selection is the task of selecting good (discriminative) features. Tfidf is probably a good feature to select.
I'm classifying content based on LDA into generic topics such as Music, Technology, Arts, Science
This is the process i'm using,
9 topics -> Music, Technology, Arts, Science etc etc.
9 documents -> Music.txt, Technology.txt, Arts.txt, Science.txt etc etc.
I've filled in each document(.txt file) with about 10,000 lines of content of what i think is "pure" categorical content
I then classify a test document, to see how well the classifier is trained
My Question is,
a.) Is this an efficient way to classify text (using the above steps)?
b.) Where should i be looking for "pure" topical content to fill each of these files? Sources which are not too large (text data > 1GB)
classification is only on "generic" topics such as the above
a) The method you describe sounds fine, but everything will depend on the implementation of labeled LDA that you're using. One of the best implementations I know is the Stanford Topic Modeling Toolbox. It is not actively developed anymore, but it worked great when I used it.
b) You can look for topical content on DBPedia, which has a structured ontology of topics/entities, and links to Wikipedia articles on those topics/entities.
I suggest you to use bag-of-words (bow) for each class you are using. Or vectors where each column is the frequency of important keywords related to the class you want to target.
Regarding the dictionaries you have DBPedia as yves referred or WordNet.
a.)The simplest solution is surely the k-nearest neighbors algorithm (knn). In fact, it will classify new texts with categorical content using an overlap metric.
You could find ressources here: https://github.com/search?utf8=✓&q=knn+text&type=Repositories&ref=searchresults
Dataset issue:
If you are dealing with classifying live user feeds, then I guess no single dataset will suffice your requirement.
Because if new movie X released, it might not catch by your classification dataset as the training dataset is obsoleted for it now.
For classification I guess to stay updated with latest datasets, use twitter training datasets. Develop dynamic algorithm which update the classifier with latest updated tweet datasets. You could select top 15-20 hash tag for each category of your choice to get most relevant dataset for each category.
Classifier:
Most of the classifier uses bag of words model, you can try out various classifiers and see which gives best result. see :
http://www.nltk.org/howto/classify.html
http://scikit-learn.org/stable/supervised_learning.html
I'm working on a text classification problem, and I have problems with missing values on some features.
I'm calculating class probabilities of words from labeled training data.
For example;
Let word foo belongs to class A for 100 times and belongs to class B for 200 times. In this case, i find class probability vector as [0.33,0.67] , and give it along with the word itself to classifier.
Problem is that, in the test set, there are some words that have not been seen in training data, so they have no probability vectors.
What could i do for this problem?
I ve tried giving average class probability vector of all words for missing values, but it did not improve accuracy.
Is there a way to make classifier ignore some features during evaluation just for specific instances which does not have a value for giving feature?
Regards
There is many way to achieve that
Create and train classifiers for all sub-set of feature you have. You can train your classifier on sub-set with the same data as tre training of the main classifier.
For each sample juste look at the feature it have and use the classifier that fit him the better. Don't try to do some boosting with thoses classifiers.
Just create a special class for samples that can't be classified. Or you have experimented result too poor with so little feature.
Sometimes humans too can't succefully classify samples. In many case samples that can't be classified should just be ignore. The problem is not in the classifier but in the input or can be explain by the context.
As nlp point of view, many word have a meaning/usage that is very similare in many application. So you can use stemming/lemmatization to create class of words.
You can also use syntaxic corrections, synonyms, translations (does the word come from another part of the world ?).
If this problem as enouph importance for you then you will end with a combination of the 3 previous points.
I am new in machine learning. My problem is to make a machine to select a university for the student according to his location and area of interest. i.e it should select the university in the same city as in the address of the student. I am confused in selection of the algorithm can I use Perceptron algorithm for this task.
There are no hard rules as to which machine learning algorithm is the best for which task. Your best bet is to try several and see which one achieves the best results. You can use the Weka toolkit, which implements a lot of different machine learning algorithms. And yes, you can use the perceptron algorithm for your problem -- but that is not to say that you would achieve good results with it.
From your description it sounds like the problem you're trying to solve doesn't really require machine learning. If all you want to do is match a student with the closest university that offers a course in the student's area of interest, you can do this without any learning.
I second the first remark that you probably don't need machine learning if the student has to live in the same area as the university. If you want to use an ML algorithm, maybe it would best to think about what data you would have to start with. The thing that comes to mind is a vector for a university that has certain subjects/areas for each feature. Then compute a distance from a vector which is like an ideal feature vector for the student. Minimize this distance.
The first and formost thing you need is a labeled dataset.
It sounds like the problem could be decomposed into a ML problem however you first need a set of positive and negative examples to train from.
How big is your dataset? What features do you have available? Once you answer these questions you can select an algorithm that bests fits the features of your data.
I would suggest using decision trees for this problem which resembles a set of if else rules. You can just take the location and area of interest of the student as conditions of if and else if statements and then suggest a university for him. Since its a direct mapping of inputs to outputs, rule based solution would work and there is no learning required here.
Maybe you can use a "recommender system"or a clustering approach , you can investigate more deeply the techniques like "collaborative filtering"(recommender system) or k-means(clustering) but again, as some people said, first you need data to learn from, and maybe your problem can be solved without ML.
Well, there is no straightforward and sure-shot answer to this question. The answer depends on many factors like the problem statement and the kind of output you want, type and size of the data, the available computational time, number of features, and observations in the data, to name a few.
Size of the training data
Accuracy and/or Interpretability of the output
Accuracy of a model means that the function predicts a response value for a given observation, which is close to the true response value for that observation. A highly interpretable algorithm (restrictive models like Linear Regression) means that one can easily understand how any individual predictor is associated with the response while the flexible models give higher accuracy at the cost of low interpretability.
Speed or Training time
Higher accuracy typically means higher training time. Also, algorithms require more time to train on large training data. In real-world applications, the choice of algorithm is driven by these two factors predominantly.
Algorithms like Naïve Bayes and Linear and Logistic regression are easy to implement and quick to run. Algorithms like SVM, which involve tuning of parameters, Neural networks with high convergence time, and random forests, need a lot of time to train the data.
Linearity
Many algorithms work on the assumption that classes can be separated by a straight line (or its higher-dimensional analog). Examples include logistic regression and support vector machines. Linear regression algorithms assume that data trends follow a straight line. If the data is linear, then these algorithms perform quite good.
Number of features
The dataset may have a large number of features that may not all be relevant and significant. For a certain type of data, such as genetics or textual, the number of features can be very large compared to the number of data points.