Send SystemVerilog $display to stderr - stdout

I am using Verilator to incorporate an algorithm written in SystemVerilog into an executable utility that manipulates I/O streams passed via stdin and stdout. Unfortunately, when I use the SystemVerilog $display() function, the output goes to stdout. I would like it to go to stderr so that stdout remains uncontaminated for my other purposes.
How can I make this happen?

Thanks to #toolic for pointing out the existence of $fdisplay(), which can be used thusly...
$fdisplay(STDERR,"hello world"); // also supports formatted arguments
IEEE Std 1800-2012 states that STDERR should be pre-opened, but it did not seem to be known to Verilator. A workaround for this is:
integer STDERR = 32'h8000_0002;
Alternatively, you can create a log file handle for use with $fdisplay() like so...
integer logfile;
initial begin
$system("echo 'initial at ['$(date)']'>>temp.log");
logfile = $fopen("temp.log","a"); // or open with "w" to start fresh
end
It might be nice if you could create a custom wrapper that works like $display but uses your selected file descriptor (without specifying it every time). Unfortunately, that doesn't seem to be possible within the language itself -- but maybe you can do it with the DPI, see DPI Display Functions (I haven't gotten this to work so far).

Related

What standard input and output would be if there's no terminal connected to server?

This question came up into my mind when I was thinking about ways of server logging yesterday.
Normally, we open a terminal connected to local computer or remote server, run an executable, and print (printf, cout) some debug/log information in the terminal.
But for those processes/executables/scripts running on the server which are not connected to a terminal, what are the standard input and output?
For example:
Suppose I have a crontab task, running a program on the server many times a day. If I write something like cout << "blablabla" << endl; in the program. What's gonna happen? Where those output will flow into?
Another example I came up and wanted to know is, if I write a CGI program (use C or C++) for let's say a Apache web server, what is the standard input and output of my CGI program ? (According to this C++ CGI tutorial, I guess the standard input and output of the CGI program are in some ways redirected to the Apache server. Because it's using cout to output the html contents, not by return. )
I've read this What is “standard input”? before asking, which told me standard input isn't necessary to be tied to keyboard while standard output isn't necessary to be tied to a terminal/console/screen.
OS is Linux.
The standard input and standard output (and standard error) streams can point to basically any I/O device. This is commonly a terminal, but it can also be a file, a pipe, a network socket, a printer, etc. What exactly those streams direct their I/O to is usually determined by the process that launches your process, be that a shell or a daemon like cron or apache, but a process can redirect those streams itself it it would like.
I'll use Linux as an example, but the concepts are similar on most other OSes. On Linux, the standard input and standard output stream are represented by file descriptors 0 and 1. The macros STDIN_FILENO and STDOUT_FILENO are just for convenience and clarity. A file descriptor is just a number that matches up to some file description that the OS kernel maintains that tells it how to write to that device. That means that from a user-space process's perspective, you write to pretty much anything the same way: write(some_file_descriptor, some_string, some_string_length) (higher-level I/O functions like printf or cout are just wrappers around one or more calls to write). To the process, it doesn't matter what type of device some_file_descriptor represents. The OS kernel will figure that out for you and pass your data to the appropriate device driver.
The standard way to launch a new process is to call fork to duplicate the parent process, and then later to call one of the exec family of functions in the child process to start executing some new program. In between, it will often close the standard streams it inherited from its parent and open new ones to redirect the child process's output somewhere new. For instance, to have the child pipe its output back to the parent, you could do something like this in C++:
int main()
{
// create a pipe for the child process to use for its
// standard output stream
int pipefds[2];
pipe(pipefds);
// spawn a child process that's a copy of this process
pid_t pid = fork();
if (pid == 0)
{
// we're now in the child process
// we won't be reading from this pipe, so close its read end
close(pipefds[0]);
// we won't be reading anything
close(STDIN_FILENO);
// close the stdout stream we inherited from our parent
close(STDOUT_FILENO);
// make stdout's file descriptor refer to the write end of our pipe
dup2(pipefds[1], STDOUT_FILENO);
// we don't need the old file descriptor anymore.
// stdout points to this pipe now
close(pipefds[1]);
// replace this process's code with another program
execlp("ls", "ls", nullptr);
} else {
// we're still in the parent process
// we won't be writing to this pipe, so close its write end
close(pipefds[1]);
// now we can read from the pipe that the
// child is using for its standard output stream
std::string read_from_child;
ssize_t count;
constexpr size_t BUF_SIZE = 100;
char buf[BUF_SIZE];
while((count = read(pipefds[0], buf, BUF_SIZE)) > 0) {
std::cout << "Read " << count << " bytes from child process\n";
read_from_child.append(buf, count);
}
std::cout << "Read output from child:\n" << read_from_child << '\n';
return EXIT_SUCCESS;
}
}
Note: I've omitted error handling for clarity
This example creates a child process and redirects its output to a pipe. The program run in the child process (ls) can treat the standard output stream just as it would if it were referencing a terminal (though ls changes some behaviors if it detects its standard output isn't a terminal).
This sort of redirection can also be done from a terminal. When you run a command you can use the redirection operators to tell your shell to redirect that commands standard streams to some other location than the terminal. For instance, here's a convoluted way to copy a file from one machine to another using an sh-like shell:
gzip < some_file | ssh some_server 'zcat > some_file'
This does the following:
create a pipe
run gzip redirecting its standard input stream to read from "some_file" and redirecting its standard output stream to write to the pipe
run ssh and redirect its standard input stream to read from the pipe
on the server, run zcat with its standard input redirected from the data read from the ssh connection and its standard output redirected to write to "some_file"

Write to the system's standard error in Progress

I am writing a small program in Progress that needs to write an error message to the system's standard error. What ways, simple if at all possible, can I use to print to standard error?
I am using OpenEdge 11.3.
When on Windows (10.2B+) you can use .NET:
System.Console:Error:WriteLine ("This is an error message") .
together with
prowin32 2> stderr.out
Progress doesn't provide a way to write to stderr - the easiest way I can think of is to output-through an external program that takes stdin and echoes it to stderr.
You could look into LOG-MANAGER:WRITE-MESSAGE. It won't log to standard output or standard error, but to a client-specific log. This log should be monitored in any case (specifically if the client is an application server).
From the documentation:
For an interactive or batch client, the WRITE-MESSAGE( ) method writes the log entries to the log file specified by the LOGFILE-NAME attribute or the Client Logging (-clientlog) startup parameter. For WebSpeed agents and AppServer servers, the WRITE-MESSAGE() method writes the log entries to the server log file. For DataServers, the WRITE-MESSAGE() method writes the log entries to the log file specified by the DataServer Logging (-dslog) startup parameter.
LOG-MANAGER:WRITE-MESSAGE("Got here, x=" + STRING(x), "DEBUG1").
Will write this in the log:
[04/12/05#13:19:19.742-0500] P-003616 T-001984 1 4GL DEBUG1 Got here, x=5
There are quite a lot of options regarding the LOG-MANAGER system, what messages to display, where the file is placed, etc.
There is no easy way, but in Unixen you can always do something like this using OUTPUT THROUGH (untested):
output through "cat >&2" no-echo unbuffered.
Alternatively -- and this is tested -- if you just want error messages from a batch-mode program to go to standard out then
output through "tee" ...
...definitely works.

Validate URL in Informix 4GL program

In my Informix 4GL program, I have an input field where the user can insert a URL and the feed is later being sent over to the web via a script.
How can I validate the URL at the time of input, to ensure that it's a live link? Can I make a call and see if I get back any errors?
I4GL checking the URL
There is no built-in function to do that (URLs didn't exist when I4GL was invented, amongst other things).
If you can devise a C method to do that, you can arrange to call that method through the C interface. You'll write the method in native C, and then write an I4GL-callable C interface function using the normal rules. When you build the program with I4GL c-code, you'll link the extra C functions too. If you build the program with I4GL-RDS (p-code), you'll need to build a custom runner with the extra function(s) exposed. All of this is standard technique for I4GL.
In general terms, the C interface code you'll need will look vaguely like this:
#include <fglsys.h>
// Standard interface for I4GL-callable C functions
extern int i4gl_validate_url(int nargs);
// Using obsolescent interface functions
int i4gl_validate_url(int nargs)
{
if (nargs != 1)
fgl_fatal(__FILE__, __LINE__, -1318);
char url[4096];
popstring(url, sizeof(url));
int r = validate_url(url); // Your C function
retint(r);
return 1;
}
You can and should check the manuals but that code, using the 'old style' function names, should compile correctly. The code can be called in I4GL like this:
DEFINE url CHAR(256)
DEFINE rc INTEGER
LET url = "http://www.google.com/"
LET rc = i4gl_validate_url(url)
IF rc != 0 THEN
ERROR "Invalid URL"
ELSE
MESSAGE "URL is OK"
END IF
Or along those general lines. Exactly what values you return depends on your decisions about how to return a status from validate_url(). If need so be, you can return multiple values from the interface function (e.g. error number and text of error message). Etc. This is about the simplest possible design for calling some C code to validate a URL from within an I4GL program.
Modern C interface functions
The function names in the interface library were all changed in the mid-00's, though the old names still exist as macros. The old names were:
popstring(char *buffer, int buflen)
retint(int retval)
fgl_fatal(const char *file, int line, int errnum)
You can find the revised documentation at IBM Informix 4GL v7.50.xC3: Publication library in PDF in the 4GL Reference Manual, and you need Appendix C "Using C with IBM Informix 4GL".
The new names start ibm_lib4gl_:
ibm_libi4gl_popMInt()
ibm_libi4gl_popString()
As to the error reporting function, there is one — it exists — but I don't have access to documentation for it any more. It'll be in the fglsys.h header. It takes an error number as one argument; there's the file name and a line number as the other arguments. And it will, presumably, be ibm_lib4gl_… and there'll be probably be Fatal or perhaps fatal (or maybe Err or err) in the rest of the name.
I4GL running a script that checks the URL
Wouldn't it be easier to write a shell script to get the status code? That might work if I can return the status code or any existing results back to the program into a variable? Can I do that?
Quite possibly. If you want the contents of the URL as a string, though, you'll might end up wanting to call C. It is certainly worth thinking about whether calling a shell script from within I4GL is doable. If so, it will be a lot simpler (RUN "script", IIRC, where the literal string would probably be replaced by a built-up string containing the command and the URL). I believe there are file I/O functions in I4GL now, too, so if you can get the script to write a file (trivial), you can read the data from the file without needing custom C. For a long time, you needed custom C to do that.
I just need to validate the URL before storing it into the database. I was thinking about:
#!/bin/bash
read -p "URL to check: " url
if curl --output /dev/null --silent --head --fail "$url"; then
printf '%s\n' "$url exist"
else
printf '%s\n' "$url does not exist"
fi
but I just need the output instead of /dev/null to be into a variable. I believe the only option is to dump the output into a temp file and read from there.
Instead of having I4GL run the code to validate the URL, have I4GL run a script to validate the URL. Use the exit status of the script and dump the output of curl into /dev/null.
FUNCTION check_url(url)
DEFINE url VARCHAR(255)
DEFINE command_line VARCHAR(255)
DEFINE exit_status INTEGER
LET command_line = "check_url ", url
RUN command_line RETURNING exit_status
RETURN exit_status
END FUNCTION {check_url}
Your calling code can analyze exit_status to see whether it worked. A value of 0 indicates success; non-zero indicates a problem of some sort, which can be deemed 'URL does not work'.
Make sure the check_url script (a) exits with status zero on success and non-zero on any sort of failure, and (b) doesn't write anything to standard output (or standard error) by default. The writing to standard error or output will screw up screen layouts, etc, and you do not want that. (You can obviously have options to the script that enable standard output, or you can invoke the script with options to suppress standard output and standard error, or redirect the outputs to /dev/null; however, when used by the I4GL program, it should be silent.)
Your 'script' (check_url) could be as simple as:
#!/bin/bash
exec curl --output /dev/null --silent --head --fail "${1:-http://www.example.com/"
This passes the first argument to curl, or the non-existent example.com URL if no argument is given, and replaces itself with curl, which generates a zero/non-zero exit status as required. You might add 2>/dev/null to the end of the command line to ensure that error messages are not seen. (Note that it will be hell debugging this if anything goes wrong; make sure you've got provision for debugging.)
The exec is a minor optimization; you could omit it with almost no difference in result. (I could devise a scheme that would probably spot the difference; it involves signalling the curl process, though — kill -9 9999 or similar, where the 9999 is the PID of the curl process — and isn't of practical significance.)
Given that the script is just one line of code that invokes another program, it would be possible to embed all that in the I4GL program. However, having an external shell script (or Perl script, or …) has merits of flexibility; you can edit it to log attempts, for example, without changing the I4GL code at all. One more file to distribute, but better flexibility — keep a separate script, even though it could all be embedded in the I4GL.
As Jonathan said "URLs didn't exist when I4GL was invented, amongst other things". What you will find is that the products that have grown to superceed Informix-4gl such as FourJs Genero will cater for new technologies and other things invented after I4GL.
Using FourJs Genero, the code below will do what you are after using the Informix 4gl syntax you are familiar with
IMPORT com
MAIN
-- Should succeed and display 1
DISPLAY validate_url("http://www.google.com")
DISPLAY validate_url("http://www.4js.com/online_documentation/fjs-fgl-manual-html/index.html#c_fgl_nf.html") -- link to some of the features added to I4GL by Genero
-- Should fail and display 0
DISPLAY validate_url("http://www.google.com/testing")
DISPLAY validate_url("http://www.google2.com")
END MAIN
FUNCTION validate_url(url)
DEFINE url STRING
DEFINE req com.HttpRequest
DEFINE resp com.HttpResponse
-- Returns TRUE if http request to a URL returns 200
TRY
LET req = com.HttpRequest.create(url)
CALL req.doRequest()
LET resp = req.getResponse()
IF resp.getStatusCode() = 200 THEN
RETURN TRUE
END IF
-- May want to handle other HTTP status codes
CATCH
-- May want to capture case if not connected to internet etc
END TRY
RETURN FALSE
END FUNCTION

Use stderr in lua io.popen to determine faulty function call

I'm making a function that can read the metadata of the current song playing in spotify. This is being programmed in lua since it is an implementation for awesome wm. I got the following line to get all the metadata that I can later use.
handle = io.popen('qdbus org.mpris.MediaPlayer2.spotify /org/mpris/MediaPlayer2 org.mpris.MediaPlayer2.Player.Metadata | awk -F: \'{$1=\"\";$2=\"\";print substr($0,4)}\'')
However when Spotify is not running I don't get the expected information and qdbus writes an error to the stderr stream. I wanted to use the fact that qdbus writes to the error stream to determine a fault and stop the program there. (This should also catch any other errors not related to wheter spotify is running or not)
My understanding is that lua popen uses popen3 that can subdivide between stdout and stderr. but all my efforts so far are fruitless and my error stream is always empty. Is it possible to check for a non nil value in the stderr in order to determine a faulty call to qdbus (or awk)?
thanks!
I think you can redirect stderr to stdout in the call to popen like this:
handle = io.popen("somecommand 2>&1")
If you want to differentiate stderr and stdout, you cannot do it with the io library but you can with luaposix. See this answer for instance.
You can checkout juci.exec which I wrote for JUCI webgui. I struggled with the same problem and I ended up using luaposix for this kind of thing when I really need two separate streams. My implementation also gives you the program exit code which is good for testing for errors: https://github.com/mkschreder/juci/blob/master/juci/lua/core.lua

Capturing output from WshShell.Exec using Windows Script Host

I wrote the following two functions, and call the second ("callAndWait") from JavaScript running inside Windows Script Host. My overall intent is to call one command line program from another. That is, I'm running the initial scripting using cscript, and then trying to run something else (Ant) from that script.
function readAllFromAny(oExec)
{
if (!oExec.StdOut.AtEndOfStream)
return oExec.StdOut.ReadLine();
if (!oExec.StdErr.AtEndOfStream)
return "STDERR: " + oExec.StdErr.ReadLine();
return -1;
}
// Execute a command line function....
function callAndWait(execStr) {
var oExec = WshShell.Exec(execStr);
while (oExec.Status == 0)
{
WScript.Sleep(100);
var output;
while ( (output = readAllFromAny(oExec)) != -1) {
WScript.StdOut.WriteLine(output);
}
}
}
Unfortunately, when I run my program, I don't get immediate feedback about what the called program is doing. Instead, the output seems to come in fits and starts, sometimes waiting until the original program has finished, and sometimes it appears to have deadlocked. What I really want to do is have the spawned process actually share the same StdOut as the calling process, but I don't see a way to do that. Just setting oExec.StdOut = WScript.StdOut doesn't work.
Is there an alternate way to spawn processes that will share the StdOut & StdErr of the launching process? I tried using "WshShell.Run(), but that gives me a "permission denied" error. That's problematic, because I don't want to have to tell my clients to change how their Windows environment is configured just to run my program.
What can I do?
You cannot read from StdErr and StdOut in the script engine in this way, as there is no non-blocking IO as Code Master Bob says. If the called process fills up the buffer (about 4KB) on StdErr while you are attempting to read from StdOut, or vice-versa, then you will deadlock/hang. You will starve while waiting for StdOut and it will block waiting for you to read from StdErr.
The practical solution is to redirect StdErr to StdOut like this:
sCommandLine = """c:\Path\To\prog.exe"" Argument1 argument2"
Dim oExec
Set oExec = WshShell.Exec("CMD /S /C "" " & sCommandLine & " 2>&1 """)
In other words, what gets passed to CreateProcess is this:
CMD /S /C " "c:\Path\To\prog.exe" Argument1 argument2 2>&1 "
This invokes CMD.EXE, which interprets the command line. /S /C invokes a special parsing rule so that the first and last quote are stripped off, and the remainder used as-is and executed by CMD.EXE. So CMD.EXE executes this:
"c:\Path\To\prog.exe" Argument1 argument2 2>&1
The incantation 2>&1 redirects prog.exe's StdErr to StdOut. CMD.EXE will propagate the exit code.
You can now succeed by reading from StdOut and ignoring StdErr.
The downside is that the StdErr and StdOut output get mixed together. As long as they are recognisable you can probably work with this.
Another technique which might help in this situation is to redirect the standard error stream of the command to accompany the standard output.
Do this by adding "%comspec% /c" to the front and "2>&1" to the end of the execStr string.
That is, change the command you run from:
zzz
to:
%comspec% /c zzz 2>&1
The "2>&1" is a redirect instruction which causes the StdErr output (file descriptor 2) to be written to the StdOut stream (file descriptor 1).
You need to include the "%comspec% /c" part because it is the command interpreter which understands about the command line redirect. See http://technet.microsoft.com/en-us/library/ee156605.aspx
Using "%comspec%" instead of "cmd" gives portability to a wider range of Windows versions.
If your command contains quoted string arguments, it may be tricky to get them right:
the specification for how cmd handles quotes after "/c" seems to be incomplete.
With this, your script needs only to read the StdOut stream, and will receive both standard output and standard error.
I used this with "net stop wuauserv", which writes to StdOut on success (if the service is running)
and StdErr on failure (if the service is already stopped).
First, your loop is broken in that it always tries to read from oExec.StdOut first. If there is no actual output then it will hang until there is. You wont see any StdErr output until StdOut.atEndOfStream becomes true (probably when the child terminates). Unfortunately, there is no concept of non-blocking I/O in the script engine. That means calling read and having it return immediately if there is no data in the buffer. Thus there is probably no way to get this loop to work as you want. Second, WShell.Run does not provide any properties or methods to access the standard I/O of the child process. It creates the child in a separate window, totally isolated from the parent except for the return code. However, if all you want is to be able to SEE the output from the child then this might be acceptable. You will also be able to interact with the child (input) but only through the new window (see SendKeys).
As for using ReadAll(), this would be even worse since it collects all the input from the stream before returning so you wouldn't see anything at all until the stream was closed. I have no idea why the example places the ReadAll in a loop which builds a string, a single if (!WScript.StdIn.AtEndOfStream) should be sufficient to avoid exceptions.
Another alternative might be to use the process creation methods in WMI. How standard I/O is handled is not clear and there doesn't appear to be any way to allocate specific streams as StdIn/Out/Err. The only hope would be that the child would inherit these from the parent but that's what you want, isn't it? (This comment based upon an idea and a little bit of research but no actual testing.)
Basically, the scripting system is not designed for complicated interprocess communication/synchronisation.
Note: Tests confirming the above were performed on Windows XP Sp2 using Script version 5.6. Reference to current (5.8) manuals suggests no change.
Yes, the Exec function seems to be broken when it comes to terminal output.
I have been using a similar function function ConsumeStd(e) {WScript.StdOut.Write(e.StdOut.ReadAll());WScript.StdErr.Write(e.StdErr.ReadAll());} that I call in a loop similar to yours. Not sure if checking for EOF and reading line by line is better or worse.
You might have hit the deadlock issue described on this Microsoft Support site.
One suggestion is to always read both from stdout and stderr.
You could change readAllFromAny to:
function readAllFromAny(oExec)
{
var output = "";
if (!oExec.StdOut.AtEndOfStream)
output = output + oExec.StdOut.ReadLine();
if (!oExec.StdErr.AtEndOfStream)
output = output + "STDERR: " + oExec.StdErr.ReadLine();
return output ? output : -1;
}

Resources