CDI and multiple instances - dependency-injection

I'm just investigating possibilities of DI frameworks and I made some stupid example for it. I have simple service.
public class Service implements ServiceI {
private Source source;
private Translator translator;
#Inject
public Service(Translator translator, Source source) {
this.translator = translator;
this.source = source;
}
I want to have two instances of this service one which is initiated with TranslatorA and SourceA and second which will be injected with different values.
How can one have two instances with different beans injected inside?
I'm interested in ways how to achieve this in both Guice and Weld CDI.
So far I created multiple Guice modules and specify bind-to in it as I like. But I'm not completely sure if it is correct way. And this completely fails in CDI as there are no modules.
I thing that having multiple instances must be pretty common case or am I wrong?

The way you would do this with CDI is by setting up a producers for translator and source. It's the only way to control which implementations are used for injection at runtime. The implementation details may vary based on your exact needs but something like this should get you on the right track
#Produces
public Translator produceTranslator(#Dependent TranslatorA implA, #Dependent TranslatorB implB) {
return checkRuntimeCondition() ? implA : implB;
}
And the same for the source. That way when you inject Service, CDI'll call the producer method for each parameter and use a runtime condition to select the implementation. YMMV on the details, you may need to set up additional qualifiers to avoid ambiguity.

Related

The benefits and correct usage of a DI Container

I'm having troubles getting the advantage of a IoC (DI) container like Ninject, Unity or whatever. I understand the concepts as follows:
DI: Injecting a dependency into the class that requires it (preferably via constructor injection). I totally see why the less tight coupling is a good thing.
public MyClass{
ISomeService svc;
public MyClass(ISomeService svc){
svc = svc;
}
public doSomething(){
svc.doSomething();
}
}
Service Locator: When a "container" is used directly inside the class that requires a dependancy, to resolve the dependancy. I do get the point that this generates another dependancy and I also see that basically nothing is getting injected.
public MyClass{
public MyClass(){}
public doSomething(){
ServiceLocator.resolve<ISomeService>().doSomething();
}
}
Now, what confuses me is the concept of a "DI container". To me, it looks exactly like a service locator which - as far as I read - should only be used in the entry point / startup method of an application to register and resolve the dependancies and inject them into the constructors of other classes - and not within a concrete class that needs the dependancy (probably for the same reason why Service locators are considered "bad")
What is the purpose of using the container when I could just create the dependancy and pass it to the constructor?
public void main(){
DIContainer.register<ISomeService>(new SomeService());
// ...
var myclass = new MyClass(DIContainer.resolve<ISomeService>());
myclass.doSomething();
}
Does it really make sense to pass all the dependancies to all classes in the application initialization method? There might be 100 dependancies which will be eventually needed (or not) and just because it's considered a good practice you set create them in the init method?
What is the purpose of using the container when I could just create the dependancy and pass it to the constructor?
DI containers are supposed to help you create an object graph quickly. You just tell it which concrete implementations you want to use for which abstractions (the registration phase), and then it can create any objects you want want (resolve phase).
If you create the dependencies and pass them to the constructor (in the application initialization code), then you are actually doing Pure DI.
I would argue that Pure DI is a better approach in many cases. See my article here
Does it really make sense to pass all the dependancies to all classes in the application initialization method? There might be 100 dependancies which will be eventually needed (or not) and just because it's considered a good practice you set create them in the init method?
I would say yes. You should create the object graph when your application starts up. This is called the composition root.
If you need to create objects after your application has started then you should use factories (mainly abstract factories). And such factories will be created with the other objects in the composition roots.
Your classes shouldn't do much in the constructor, this will make the cost of creating all the dependencies at the composition root low.
However, I would say that it is OK to create some types of objects using the new keyword in special cases. Like when the object is a simple Data Transfer Object (DTO)

Why does one use dependency injection?

I'm trying to understand dependency injections (DI), and once again I failed. It just seems silly. My code is never a mess; I hardly write virtual functions and interfaces (although I do once in a blue moon) and all my configuration is magically serialized into a class using json.net (sometimes using an XML serializer).
I don't quite understand what problem it solves. It looks like a way to say: "hi. When you run into this function, return an object that is of this type and uses these parameters/data."
But... why would I ever use that? Note I have never needed to use object as well, but I understand what that is for.
What are some real situations in either building a website or desktop application where one would use DI? I can come up with cases easily for why someone may want to use interfaces/virtual functions in a game, but it's extremely rare (rare enough that I can't remember a single instance) to use that in non-game code.
First, I want to explain an assumption that I make for this answer. It is not always true, but quite often:
Interfaces are adjectives; classes are nouns.
(Actually, there are interfaces that are nouns as well, but I want to generalize here.)
So, e.g. an interface may be something such as IDisposable, IEnumerable or IPrintable. A class is an actual implementation of one or more of these interfaces: List or Map may both be implementations of IEnumerable.
To get the point: Often your classes depend on each other. E.g. you could have a Database class which accesses your database (hah, surprise! ;-)), but you also want this class to do logging about accessing the database. Suppose you have another class Logger, then Database has a dependency to Logger.
So far, so good.
You can model this dependency inside your Database class with the following line:
var logger = new Logger();
and everything is fine. It is fine up to the day when you realize that you need a bunch of loggers: Sometimes you want to log to the console, sometimes to the file system, sometimes using TCP/IP and a remote logging server, and so on ...
And of course you do NOT want to change all your code (meanwhile you have gazillions of it) and replace all lines
var logger = new Logger();
by:
var logger = new TcpLogger();
First, this is no fun. Second, this is error-prone. Third, this is stupid, repetitive work for a trained monkey. So what do you do?
Obviously it's a quite good idea to introduce an interface ICanLog (or similar) that is implemented by all the various loggers. So step 1 in your code is that you do:
ICanLog logger = new Logger();
Now the type inference doesn't change type any more, you always have one single interface to develop against. The next step is that you do not want to have new Logger() over and over again. So you put the reliability to create new instances to a single, central factory class, and you get code such as:
ICanLog logger = LoggerFactory.Create();
The factory itself decides what kind of logger to create. Your code doesn't care any longer, and if you want to change the type of logger being used, you change it once: Inside the factory.
Now, of course, you can generalize this factory, and make it work for any type:
ICanLog logger = TypeFactory.Create<ICanLog>();
Somewhere this TypeFactory needs configuration data which actual class to instantiate when a specific interface type is requested, so you need a mapping. Of course you can do this mapping inside your code, but then a type change means recompiling. But you could also put this mapping inside an XML file, e.g.. This allows you to change the actually used class even after compile time (!), that means dynamically, without recompiling!
To give you a useful example for this: Think of a software that does not log normally, but when your customer calls and asks for help because he has a problem, all you send to him is an updated XML config file, and now he has logging enabled, and your support can use the log files to help your customer.
And now, when you replace names a little bit, you end up with a simple implementation of a Service Locator, which is one of two patterns for Inversion of Control (since you invert control over who decides what exact class to instantiate).
All in all this reduces dependencies in your code, but now all your code has a dependency to the central, single service locator.
Dependency injection is now the next step in this line: Just get rid of this single dependency to the service locator: Instead of various classes asking the service locator for an implementation for a specific interface, you - once again - revert control over who instantiates what.
With dependency injection, your Database class now has a constructor that requires a parameter of type ICanLog:
public Database(ICanLog logger) { ... }
Now your database always has a logger to use, but it does not know any more where this logger comes from.
And this is where a DI framework comes into play: You configure your mappings once again, and then ask your DI framework to instantiate your application for you. As the Application class requires an ICanPersistData implementation, an instance of Database is injected - but for that it must first create an instance of the kind of logger which is configured for ICanLog. And so on ...
So, to cut a long story short: Dependency injection is one of two ways of how to remove dependencies in your code. It is very useful for configuration changes after compile-time, and it is a great thing for unit testing (as it makes it very easy to inject stubs and / or mocks).
In practice, there are things you can not do without a service locator (e.g., if you do not know in advance how many instances you do need of a specific interface: A DI framework always injects only one instance per parameter, but you can call a service locator inside a loop, of course), hence most often each DI framework also provides a service locator.
But basically, that's it.
P.S.: What I described here is a technique called constructor injection, there is also property injection where not constructor parameters, but properties are being used for defining and resolving dependencies. Think of property injection as an optional dependency, and of constructor injection as mandatory dependencies. But discussion on this is beyond the scope of this question.
I think a lot of times people get confused about the difference between dependency injection and a dependency injection framework (or a container as it is often called).
Dependency injection is a very simple concept. Instead of this code:
public class A {
private B b;
public A() {
this.b = new B(); // A *depends on* B
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
A a = new A();
a.DoSomeStuff();
}
you write code like this:
public class A {
private B b;
public A(B b) { // A now takes its dependencies as arguments
this.b = b; // look ma, no "new"!
}
public void DoSomeStuff() {
// Do something with B here
}
}
public static void Main(string[] args) {
B b = new B(); // B is constructed here instead
A a = new A(b);
a.DoSomeStuff();
}
And that's it. Seriously. This gives you a ton of advantages. Two important ones are the ability to control functionality from a central place (the Main() function) instead of spreading it throughout your program, and the ability to more easily test each class in isolation (because you can pass mocks or other faked objects into its constructor instead of a real value).
The drawback, of course, is that you now have one mega-function that knows about all the classes used by your program. That's what DI frameworks can help with. But if you're having trouble understanding why this approach is valuable, I'd recommend starting with manual dependency injection first, so you can better appreciate what the various frameworks out there can do for you.
As the other answers stated, dependency injection is a way to create your dependencies outside of the class that uses it. You inject them from the outside, and take control about their creation away from the inside of your class. This is also why dependency injection is a realization of the Inversion of control (IoC) principle.
IoC is the principle, where DI is the pattern. The reason that you might "need more than one logger" is never actually met, as far as my experience goes, but the actually reason is, that you really need it, whenever you test something. An example:
My Feature:
When I look at an offer, I want to mark that I looked at it automatically, so that I don't forget to do so.
You might test this like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var formdata = { . . . }
// System under Test
var weasel = new OfferWeasel();
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(new DateTime(2013,01,13,13,01,0,0));
}
So somewhere in the OfferWeasel, it builds you an offer Object like this:
public class OfferWeasel
{
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = DateTime.Now;
return offer;
}
}
The problem here is, that this test will most likely always fail, since the date that is being set will differ from the date being asserted, even if you just put DateTime.Now in the test code it might be off by a couple of milliseconds and will therefore always fail. A better solution now would be to create an interface for this, that allows you to control what time will be set:
public interface IGotTheTime
{
DateTime Now {get;}
}
public class CannedTime : IGotTheTime
{
public DateTime Now {get; set;}
}
public class ActualTime : IGotTheTime
{
public DateTime Now {get { return DateTime.Now; }}
}
public class OfferWeasel
{
private readonly IGotTheTime _time;
public OfferWeasel(IGotTheTime time)
{
_time = time;
}
public Offer Create(Formdata formdata)
{
var offer = new Offer();
offer.LastUpdated = _time.Now;
return offer;
}
}
The Interface is the abstraction. One is the REAL thing, and the other one allows you to fake some time where it is needed. The test can then be changed like this:
[Test]
public void ShouldUpdateTimeStamp
{
// Arrange
var date = new DateTime(2013, 01, 13, 13, 01, 0, 0);
var formdata = { . . . }
var time = new CannedTime { Now = date };
// System under test
var weasel= new OfferWeasel(time);
// Act
var offer = weasel.Create(formdata)
// Assert
offer.LastUpdated.Should().Be(date);
}
Like this, you applied the "inversion of control" principle, by injecting a dependency (getting the current time). The main reason to do this is for easier isolated unit testing, there are other ways of doing it. For example, an interface and a class here is unnecessary since in C# functions can be passed around as variables, so instead of an interface you could use a Func<DateTime> to achieve the same. Or, if you take a dynamic approach, you just pass any object that has the equivalent method (duck typing), and you don't need an interface at all.
You will hardly ever need more than one logger. Nonetheless, dependency injection is essential for statically typed code such as Java or C#.
And...
It should also be noted that an object can only properly fulfill its purpose at runtime, if all its dependencies are available, so there is not much use in setting up property injection. In my opinion, all dependencies should be satisfied when the constructor is being called, so constructor-injection is the thing to go with.
I think the classic answer is to create a more decoupled application, which has no knowledge of which implementation will be used during runtime.
For example, we're a central payment provider, working with many payment providers around the world. However, when a request is made, I have no idea which payment processor I'm going to call. I could program one class with a ton of switch cases, such as:
class PaymentProcessor{
private String type;
public PaymentProcessor(String type){
this.type = type;
}
public void authorize(){
if (type.equals(Consts.PAYPAL)){
// Do this;
}
else if(type.equals(Consts.OTHER_PROCESSOR)){
// Do that;
}
}
}
Now imagine that now you'll need to maintain all this code in a single class because it's not decoupled properly, you can imagine that for every new processor you'll support, you'll need to create a new if // switch case for every method, this only gets more complicated, however, by using Dependency Injection (or Inversion of Control - as it's sometimes called, meaning that whoever controls the running of the program is known only at runtime, and not complication), you could achieve something very neat and maintainable.
class PaypalProcessor implements PaymentProcessor{
public void authorize(){
// Do PayPal authorization
}
}
class OtherProcessor implements PaymentProcessor{
public void authorize(){
// Do other processor authorization
}
}
class PaymentFactory{
public static PaymentProcessor create(String type){
switch(type){
case Consts.PAYPAL;
return new PaypalProcessor();
case Consts.OTHER_PROCESSOR;
return new OtherProcessor();
}
}
}
interface PaymentProcessor{
void authorize();
}
** The code won't compile, I know :)
The main reason to use DI is that you want to put the responsibility of the knowledge of the implementation where the knowledge is there. The idea of DI is very much inline with encapsulation and design by interface.
If the front end asks from the back end for some data, then is it unimportant for the front end how the back end resolves that question. That is up to the requesthandler.
That is already common in OOP for a long time. Many times creating code pieces like:
I_Dosomething x = new Impl_Dosomething();
The drawback is that the implementation class is still hardcoded, hence has the front end the knowledge which implementation is used. DI takes the design by interface one step further, that the only thing the front end needs to know is the knowledge of the interface.
In between the DYI and DI is the pattern of a service locator, because the front end has to provide a key (present in the registry of the service locator) to lets its request become resolved.
Service locator example:
I_Dosomething x = ServiceLocator.returnDoing(String pKey);
DI example:
I_Dosomething x = DIContainer.returnThat();
One of the requirements of DI is that the container must be able to find out which class is the implementation of which interface. Hence does a DI container require strongly typed design and only one implementation for each interface at the same time. If you need more implementations of an interface at the same time (like a calculator), you need the service locator or factory design pattern.
D(b)I: Dependency Injection and Design by Interface.
This restriction is not a very big practical problem though. The benefit of using D(b)I is that it serves communication between the client and the provider. An interface is a perspective on an object or a set of behaviours. The latter is crucial here.
I prefer the administration of service contracts together with D(b)I in coding. They should go together. The use of D(b)I as a technical solution without organizational administration of service contracts is not very beneficial in my point of view, because DI is then just an extra layer of encapsulation. But when you can use it together with organizational administration you can really make use of the organizing principle D(b)I offers.
It can help you in the long run to structure communication with the client and other technical departments in topics as testing, versioning and the development of alternatives. When you have an implicit interface as in a hardcoded class, then is it much less communicable over time then when you make it explicit using D(b)I. It all boils down to maintenance, which is over time and not at a time. :-)
Quite frankly, I believe people use these Dependency Injection libraries/frameworks because they just know how to do things in runtime, as opposed to load time. All this crazy machinery can be substituted by setting your CLASSPATH environment variable (or other language equivalent, like PYTHONPATH, LD_LIBRARY_PATH) to point to your alternative implementations (all with the same name) of a particular class. So in the accepted answer you'd just leave your code like
var logger = new Logger() //sane, simple code
And the appropriate logger will be instantiated because the JVM (or whatever other runtime or .so loader you have) would fetch it from the class configured via the environment variable mentioned above.
No need to make everything an interface, no need to have the insanity of spawning broken objects to have stuff injected into them, no need to have insane constructors with every piece of internal machinery exposed to the world. Just use the native functionality of whatever language you're using instead of coming up with dialects that won't work in any other project.
P.S.: This is also true for testing/mocking. You can very well just set your environment to load the appropriate mock class, in load time, and skip the mocking framework madness.

Depencency injection question

I have a question regarding dependency injection pattern.
My question is...
If I go for constructor injection, injecting the dependencies for my class, what I get is a "big" constructor with many params.
What if ie. I dont use some of the params in some methods?
Ie. I have a service that exposes many methods. And a constructor with 10 parameters (all dependencies). But not all the methods uses all the dependencies. Some method will use only one dependency, another will use 3 dependencies. But DI container will resolve them all even if non are used.
To me this is a performance penalty of using DI container. Is this true?
It seems your class is doing to much, that it does not comply to the S in SOLID (Single responsibility principle) , maybe you could split the class in multiple smaller classes with less dependencies. The fact that not all dependencies are used by all methods suggests this.
Normally the performance penalty of injecting many dependencies is low, but it depends on the framework you pick. Some will compile methods for this on the fly. You will have to test this. Many dependencies does indicate that your class is doing too much (like Ruben said), so you might want to take a look at that. If creation of an instance of a depedency that you often don't use causes performance problems, you might want to introduce a factory as dependency. I found that the use of factories can solve many problems regarding the use of dependency injection frameworks.
// Constructor
public Consumer(IContextFactory contextFactory)
{
this.contextFactory = contextFactory;
}
public void DoSomething()
{
var context = this.contextFactory.CreateNew();
try
{
// use context here
context.Commit();
}
finally
{
context.Dispose();
}
}
You can also hide some not-yet-needed dependencies behind lazy providers. For instance:
public DataSourceProvider implements Provider<DataSource> {
public DataSource get() {
return lazyGetDataSource();
}
}
The Provider interface is part of javax.inject package.
Actually you can't know which methods are used at runtime when you build your DI container. You would have to deal with that performance penalty or if you know that there are many cases where just a few dependencies are used, you could split your container into several small containers that have less dependencies that are injected.
As rube Says probabily you should review te design of your class to stick to SOLID principles.
Anyway if it is not really necessary I'm used to go for property setter dependency insteadof the constructor. It means that you can create a property for each dependecy you need. That helps also to test the class because you can inject only the dependency you need into the context of the test you are doing instead of stub out all the dependency even if you don't need it

How to instantiate a MEF exported object using Ninject?

My application is using MEF to export some classes from an external assembly. These classes are setup for constructor injection. The issue I am facing is that
MEF is attempting to instantiate the classes when I try to access them. Is there a way to have Ninject take care of the instantiation of the class?
IEnumerable<Lazy<IMyInterface>> controllers =
mefContainer.GetExports<IMyInterface>();
// The following line throws an error because MEF is
// trying to instantiate a class that requires 5 parameters
IMyInterface firstClass = controllers.First().Value;
Update:
There are multiple classes that implement IMyInterface and I would like to select the one that has a specific name and then have Ninject create an instance of it. I'm not really sure if I want laziness.
[Export(typeof(IMyInterface))]
public class MyClassOne : IMyInterface {
private MyRepository one;
private YourRepository two;
public MyClassTwo(MyRepository repoOne, YourRepository repoTwo) {
one = repoOne;
two = repoTwo;
}
}
[Export(typeof(IMyInterface))]
public class MyClassTwo : IMyInterface {
private MyRepository one;
private YourRepository two;
public MyClassTwo(MyRepository repoOne, YourRepository repoTwo) {
one = repoOne;
two = repoTwo;
}
}
Using MEF, I would like to get either MyClassOne or MyClassTwo and then have Ninject provide an instance of MyRepository and YourRepository (Note, these two are bound in a Ninject module in the main assembly and not the assembly they are in)
You could use the Ninject Load mechanism to get the exported classes into the mix, and the you either:
kernel.GetAll<IMyInterface>()
The creation is lazy (i.e., each impl of IMyInterface is created on the fly as you iterate over the above) IIRC, but have a look at the tests in the source (which is very clean and readable, you have no excuse :P) to be sure.
If you dont need the laziness, use LINQ's ToArray or ToList to get a IMyInterface[] or List<IMyInterface>
or you can use the low-level Resolve() family of methods (again, have a look in the tests for samples) to get the eligible services [if you wanted to do some filtering or something other than just using an instance - though binding metadata is probably the solution there]
Finally, if you can edit in an explanation of whether you need laziness per se or are doing it to illustrate a point. (and have a search for Lazy<T> here and in general wrt both Ninject and autofac for some samples - cant recall if there are any examples in the source - think not as it's still on 3.5)
EDIT: In that case, you want a bind that has:
Bind<X>().To<>().In...().Named( "x" );
in the registrations in your modules in the child assembly.
Then when you're resolving in the parent assembly, you use the Kernel.Get<> overload that takes a name parameter to indicate the one you want (no need for laziness, arrays or IEnumerable). The Named mechanism is a specific (just one or two helper extensions implement it in terms of the generalised concept) application of the binding metadata concept in Ninject - there's plenty room to customise it if somethng beyond a simple name is insufficient.
If you're using MEF to construct the objects, you could use the Kernel.Inject() mechanism to inject properties. The problem is that either MEF or Ninject
- has to find the types (Ninject: generally via Bind() in Modules or via scanning extensions, after which one can do a Resolve to subset the bindings before instantiation - though this isnt something you normally do)
- has to instantiate the types (Ninject: typically via a Kernel.Get(), but if you discovered the types via e.g. MEF, you might use the Kernel.Get(Type) overloads )
- has to inject the types (Ninject: typically via a Kernel.Inject(), or implicit in the `Kernel.Get())
What's not clear to me yet is why you feel you need to mix and mangle the two - ultimately sharing duties during construction and constructor injection is not a core use case for either lib, even if they're both quite composable libraries. Do you have a constraint, or do you have critical benefits on both sides?
You can use ExportFactory to create Instances
see docs here:
http://mef.codeplex.com/wikipage?title=PartCreator
Your case would be slitly different
I would use Metadata and a custom attribute also
[ImportMany(AllowRecomposition=true)]
IEnumerable<ExportFactory<IMyInterFace, IMyInterfaceMetaData>> Controllers{ get; set; }
public IMyInterface CreateControllerFor(string parameter)
{
var controller = Controllers.Where(v => v.Metadata.ControllerName == parameter).FirstOrDefault().CreateExport().Value;
return controller;
}
or use return Controllers.First() without the Metadata
Then you can code the ninject parts around that or even stick with MEF
Hope this helps

How to avoid having injector.createInstance() all over the place when using guice?

There's something I just don't get about guice: According to what I've read so far, I'm supposed to use the Injector only in my bootstrapping class (in a standalone application this would typically be in the main() method), like in the example below (taken from the guice documentation):
public static void main(String[] args) {
/*
* Guice.createInjector() takes your Modules, and returns a new Injector
* instance. Most applications will call this method exactly once, in their
* main() method.
*/
Injector injector = Guice.createInjector(new BillingModule());
/*
* Now that we've got the injector, we can build objects.
*/
RealBillingService billingService = injector.getInstance(RealBillingService.class);
...
}
But what if not all Objects I ever need can be created during startup? Maybe I want to respond to some user interaction when the application is running? Don't I have to keep my injector around somewhere (e.g. as a static variable) and then call injector.getInstance(SomeInterface.class) when I need to create a new object?
Of course spreading calls to Injector.getInstance() all over the place seems not to be desirable.
What am I getting wrong here?
Yes, you basically only should use the Injector to create get the instance for the root-object. The rest of the application shouldn't touch the Guice-Container. As you've noticed, you still need to create some objects when required. There are different approaches for doing that, each suitable for different needs.
Inject a Provider
Provider is a interface from Guice. It allows you to request a new instance of a object. That object will be created using Guice. For example.
class MyService{
private Provider<Transaction> transactionProvider;
public MainGui(Provider<Transaction> transactionProvider){
this.transactionProvider = transactionProvider;
}
public void actionStarted(){
Transaction transaction = transactionProvider.get();
}
Build a Factory
Often you need some kind of factory. This factory uses some injected services and some parameters and creates a new object for you. Then you use this factory for new instances. Then you inject that factory and use it. There also help for this with the AssistedInject-extension
I think with these two possibilities you rarely need to use the Guice-Injector itself. However sometimes is still appropriate to use the injector itself. Then you can inject the Injector to a component.
To extend on the answer Gamlor posted, you need to also differentiate between the object types you are using.
For services, injection is the correct solution, however, don't try to always make data objects (which are generally the leafs in your object graph) injectable. There may be situations where that is the correct solution, but injecting a Provider<List> is probably not a good idea. A colleague of mine ended up do that, it made the code base very confusing after a while. We just finished cleaning it all out and the Guice modules are much more specific now.
In the abstract, I think the general idea is that if responding to user events is part of the capabilities of your application, then, well...
BillingService billingService = injector.getInstance(BillingService.class);
billingService.respondToUserEvent( event );
I guess that might be a little abstract, but the basic idea is that you get from Guice your top-level application class. Judging from your question, I guess that maybe BillingService isn't your top-level class?

Resources