I am using calcBackProject to find an object in a frame and it works somehow well scanning all the frame. but I need to enhance it
In my code at some point I have a motion detection mask and based on it I generated contours for candidate objects (objects that move and might be the target)
could I utilise this to calculate histogram for each contour and match it to the histogram of the target?
how to calculate histogram for each contour?
calcHist accepts mask but how to pass the contour as a mask
-how to match?
Convert your contour to a mask and use the mask in calcHist.
In C++ it would be done like this :
/**
* Converts a contour to a binary mask.
* The parameter mask should be a matrix of type CV_8UC1 with proper
* size to hold the mask.
* #param contour The contour to convert.
* #param mask The Mat where the mask will be written. Must have proper size
* and type before callign convertContourToMask.
*/
void convertContourToMask( const std::vector<cv::Point>& contour, cv::Mat& mask )
{
std::vector<std::vector<cv::Point>> contoursVector;
contoursVector.push_back( contour );
cv::Scalar white = cv::Scalar(255);
cv::Scalar black = cv::Scalar(0);
mask.setTo(black);
cv::drawContours(mask, contoursVector, -1, white, CV_FILLED);
}
Related
I have a contour that I would like to "snap" to edges in an image. That is, some thing like Intelligent Scissors, but for the whole contour at the same. A user has provided a rough sketch of the outline of an object, and I'd like to clean it up by "pushing" each point on the contour to the nearest point in an edge image.
Does something like this exist in OpenCV?
You can mimic active contours using cv::grabCut as suggested. You choose the radius of attraction (how far from the original position the curve can evolve), and by using dilated and eroded images, you define the unknown region around the contour.
// cv::Mat img, mask; // contour on mask as filled polygon
if ( mask.size()!=img.size() )
CV_Error(CV_StsError,"ERROR");
int R = 32; // radius of attraction
cv::Mat strel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(2*R+1,2*R+1) );
cv::Mat gc( mask.size(), CV_8UC1, cv::Scalar(cv::GC_BGD) );
cv::Mat t;
cv::dilate( mask, t, strel );
gc.setTo( cv::GC_PR_BGD, t );
gc.setTo( cv::GC_PR_FGD, mask ); // 3
cv::erode( mask, t, strel );
gc.setTo( cv::GC_FGD, t ); // 1
cv::grabCut( img, gc, cv::Rect(), cv::Mat(), cv::Mat(), 2 );
gc &= 0x1; // either foreground or probably foreground
gc *= 255; // so that you see it
What you may loose, is the topology of the contour. Some processing required there. Also, you cannot control the curvature or smoothness of the contour and it's not really contour evolution in sense.
Only if you are interested, ITK geodesic active contour might be what you are looking for http://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourLevelSetImageFilter.html
I need to use blob detection and Structural Analysis and Shape Descriptors (more specifically findContours, drawContours and moments) to detect colored circles in an image. I need to know the pros and cons of each method and which method is better. Can anyone show me the differences between those 2 methods please?
As #scap3y suggested in the comments I'd go for a much simpler approach. What I'm always doing in these cases is something similar to this:
// Convert your image to HSV color space
Mat hsv;
hsv.create(originalImage.size(), CV_8UC3);
cvtColor(originalImage,hsv,CV_RGB2HSV);
// Chose the range in each of hue, saturation and value and threshold the other pixels
Mat thresholded;
uchar loH = 130, hiH = 170;
uchar loS = 40, hiS = 255;
uchar loV = 40, hiV = 255;
inRange(hsv, Scalar(loH, loS, loV), Scalar(hiH, hiS, hiV), thresholded);
// Find contours in the image (additional step could be to
// apply morphologyEx() first)
vector<vector<Point>> contours;
findContours(thresholded,contours,CV_RETR_EXTERNAL,CHAIN_APPROX_SIMPLE);
// Draw your contours as ellipses into the original image
for(i=0;i<(int)valuable_rectangle_indices.size();i++) {
rect=minAreaRect(contours[valuable_rectangle_indices[i]]);
ellipse(originalImage, rect, Scalar(0,0,255)); // draw ellipse
}
The only thing left for you to do now is to figure out in what range your markers are in HSV color space.
I've two pictures (A and B) slightly distorted one from the other, where there are translation, rotation and scale differences between them (for example, these pictures:)
Ssoooooooo what I need is to apply a kind of transformation in pic B so it compensates the distortion/translation/rotation that exists to make both pictures with the same size, orientation and with no translation
I've already extracted the points and found the Homography, as shown bellow. But I don'know how to use the Homography to transform Mat img_B so it looks like Mat img_A. Any idea?
//-- Localize the object from img_1 in img_2
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (unsigned int i = 0; i < good_matches.size(); i++) {
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
Mat H = findHomography(obj, scene, CV_RANSAC);
Cheers,
You do not need homography for this problem. You can compute an affine transform instead. However, if you do want to use homography for other purposes, you can check out the code below. It was copied from this much detailed article on homography.
C++ Example
// pts_src and pts_dst are vectors of points in source
// and destination images. They are of type vector<Point2f>.
// We need at least 4 corresponding points.
Mat h = findHomography(pts_src, pts_dst);
// The calculated homography can be used to warp
// the source image to destination. im_src and im_dst are
// of type Mat. Size is the size (width,height) of im_dst.
warpPerspective(im_src, im_dst, h, size);
Python Example
'''
pts_src and pts_dst are numpy arrays of points
in source and destination images. We need at least
4 corresponding points.
'''
h, status = cv2.findHomography(pts_src, pts_dst)
'''
The calculated homography can be used to warp
the source image to destination. Size is the
size (width,height) of im_dst
'''
im_dst = cv2.warpPerspective(im_src, h, size)
You want the warpPerspective function. The process is analogous to the one presented in this tutorial (for affine transforms and warps)
i'm using openNI for some project with kinect sensor. i'd like to color the users pixels given with the depth map. now i have pixels that goes from white to black, but i want from red to black. i've tried with alpha blending, but my result is only that i have pixels from pink to black because i add (with addWeight) red+white = pink.
this is my actual code:
layers = device.getDepth().clone();
cvtColor(layers, layers, CV_GRAY2BGR);
Mat red = Mat(240,320, CV_8UC3, Scalar(255,0,0));
Mat red_body; // = Mat::zeros(240,320, CV_8UC3);
red.copyTo(red_body, device.getUserMask());
addWeighted(red_body, 0.8, layers, 0.5, 0.0, layers);
where device.getDepth() returns a cv::Mat with depth map and device.getUserMask() returns a cv::Mat with user pixels (only white pixels)
some advice?
EDIT:
one more thing:
thanks to sammy answer i've done it. but actually i don't have values exactly from 0 to 255, but from (for example) 123-220.
i'm going to find minimum and maximum via a simple for loop (are there better way?), and how can i map my values from min-max to 0-255 ?
First, OpenCV's default color format is BGR not RGB. So, your code for creating the red image should be
Mat red = Mat(240,320, CV_8UC3, Scalar(0,0,255));
For red to black color map, you can use element wise multiplication instead of alpha blending
Mat out = red_body.mul(layers, 1.0/255);
You can find the min and max values of a matrix M using
double minVal, maxVal;
minMaxLoc(M, &minVal, &maxVal, 0, 0);
You can then subtract the minValue and scale with a factor
double factor = 255.0/(maxVal - minVal);
M = factor*(M -minValue)
Kinda clumsy and slow, but maybe split layers, copy red_body (make it a one channel Mat, not 3) to the red channel, merge them back into layers?
Get the same effect, but much faster (in place) with reshape:
layers = device.getDepth().clone();
cvtColor(layers, layers, CV_GRAY2BGR);
Mat red = Mat(240,320, CV_8UC1, Scalar(255)); // One channel
Mat red_body;
red.copyTo(red_body, device.getUserMask());
Mat flatLayer = layers.reshape(1,240*320); // presumed dimensions of layer
red_body.reshape(0,240*320).copyTo(flatLayer.col(0));
// layers now has the red from red_body
I have a problem with filling white holes inside a black coin so that I can have only 0-255 binary images with filled black coins. I have used a Median filter to accomplish it but in that case connection bridge between coins grows and it goes impossible to recognize them after several times of erosion... So I need a simple floodFill like method in opencv
Here is my image with holes:
EDIT: floodfill like function must fill holes in big components without prompting X, Y coordinates as a seed...
EDIT: I tried to use the cvDrawContours function but it doesn't fill contours inside bigger ones.
Here is my code:
CvMemStorage mem = cvCreateMemStorage(0);
CvSeq contours = new CvSeq();
CvSeq ptr = new CvSeq();
int sizeofCvContour = Loader.sizeof(CvContour.class);
cvThreshold(gray, gray, 150, 255, CV_THRESH_BINARY_INV);
int numOfContours = cvFindContours(gray, mem, contours, sizeofCvContour, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
System.out.println("The num of contours: "+numOfContours); //prints 87, ok
Random rand = new Random();
for (ptr = contours; ptr != null; ptr = ptr.h_next()) {
Color randomColor = new Color(rand.nextFloat(), rand.nextFloat(), rand.nextFloat());
CvScalar color = CV_RGB( randomColor.getRed(), randomColor.getGreen(), randomColor.getBlue());
cvDrawContours(gray, ptr, color, color, -1, CV_FILLED, 8);
}
CanvasFrame canvas6 = new CanvasFrame("drawContours");
canvas6.showImage(gray);
Result: (you can see black holes inside each coin)
There are two methods to do this:
1) Contour Filling:
First, invert the image, find contours in the image, fill it with black and invert back.
des = cv2.bitwise_not(gray)
contour,hier = cv2.findContours(des,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
cv2.drawContours(des,[cnt],0,255,-1)
gray = cv2.bitwise_not(des)
Resulting image:
2) Image Opening:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
res = cv2.morphologyEx(gray,cv2.MORPH_OPEN,kernel)
The resulting image is as follows:
You can see, there is not much difference in both cases.
NB: gray - grayscale image, All codes are in OpenCV-Python
Reference. OpenCV Morphological Transformations
A simple dilate and erode would close the gaps fairly well, I imagine. I think maybe this is what you're looking for.
A more robust solution would be to do an edge detect on the whole image, and then a hough transform for circles. A quick google shows there are code samples available in various languages for size invariant detection of circles using a hough transform, so hopefully that will give you something to go on.
The benefit of using the hough transform is that the algorithm will actually give you an estimate of the size and location of every circle, so you can rebuild an ideal image based on that model. It should also be very robust to overlap, especially considering the quality of the input image here (i.e. less worry about false positives, so can lower the threshold for results).
You might be looking for the Fillhole transformation, an application of morphological image reconstruction.
This transformation will fill the holes in your coins, even though at the cost of also filling all holes between groups of adjacent coins. The Hough space or opening-based solutions suggested by the other posters will probably give you better high-level recognition results.
In case someone is looking for the cpp implementation -
std::vector<std::vector<cv::Point> > contours_vector;
cv::findContours(input_image, contours_vector, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
cv::Mat contourImage(input_image.size(), CV_8UC1, cv::Scalar(0));
for ( ushort contour_index = 0; contour_index < contours_vector.size(); contour_index++) {
cv::drawContours(contourImage, contours_vector, contour_index, cv::Scalar(255), -1);
}
cv::imshow("con", contourImage);
cv::waitKey(0);
Try using cvFindContours() function. You can use it to find connected components. With the right parameters this function returns a list with the contours of each connected components.
Find the contours which represent a hole. Then use cvDrawContours() to fill up the selected contour by the foreground color thereby closing the holes.
I think if the objects are touched or crowded, there will be some problems using the contours and the math morophology opening.
Instead, the following simple solution is found and tested. It is working very well, and not only for this images, but also for any other images.
here is the steps (optimized) as seen in http://blogs.mathworks.com/steve/2008/08/05/filling-small-holes/
let I: the input image
1. filled_I = floodfill(I). // fill every hole in the image.
2. inverted_I = invert(I)`.
3. holes_I = filled_I AND inverted_I. // finds all holes
4. cc_list = connectedcomponent(holes_I) // list of all connected component in holes_I.
5. holes_I = remove(cc_list,holes_I, smallholes_threshold_size) // remove all holes from holes_I having size > smallholes_threshold_size.
6. out_I = I OR holes_I. // fill only the small holes.
In short, the algorithm is just to find all holes, remove the big ones then write the small ones only on the original image.
I've been looking around the internet to find a proper imfill function (as the one in Matlab) but working in C with OpenCV. After some reaserches, I finally came up with a solution :
IplImage* imfill(IplImage* src)
{
CvScalar white = CV_RGB( 255, 255, 255 );
IplImage* dst = cvCreateImage( cvGetSize(src), 8, 3);
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contour = 0;
cvFindContours(src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
cvZero( dst );
for( ; contour != 0; contour = contour->h_next )
{
cvDrawContours( dst, contour, white, white, 0, CV_FILLED);
}
IplImage* bin_imgFilled = cvCreateImage(cvGetSize(src), 8, 1);
cvInRangeS(dst, white, white, bin_imgFilled);
return bin_imgFilled;
}
For this: Original Binary Image
Result is: Final Binary Image
The trick is in the parameters setting of the cvDrawContours function:
cvDrawContours( dst, contour, white, white, 0, CV_FILLED);
dst = destination image
contour = pointer to the first contour
white = color used to fill the contour
0 = Maximal level for drawn contours. If 0, only contour is drawn
CV_FILLED = Thickness of lines the contours are drawn with. If it is negative (For example, =CV_FILLED), the contour interiors are drawn.
More info in the openCV documentation.
There is probably a way to get "dst" directly as a binary image but I couldn't find how to use the cvDrawContours function with binary values.