Unzip File in Dataflow Before Reading - google-cloud-dataflow

Our client is uploading files into GCS, but they are zipped. Is there any way, using the Java Dataflow SDK, in which we can run through all the zipped files, unzip the file, combine all the resulting .csv files into one file, and then only do the TextIO transforms?
EDIT
To answer jkffs's questions,
Well I don't really need to combine them all into a single file, it would just be much easier from a reading perspective.
They are ZIP files, not GZ or BZ or anything else. Each ZIP contains multiple files. The files names are not really significant, and yes, I would actually prefer it TextIO transparently decompresses and concatenates all the files, on a per-archive basis.
Hope that helps!

because I had the same problem and only came to this 1 year old and quite incomplete solution. Here is a full example on how to unzip files on google dataflow:
public class SimpleUnzip {
private static final Logger LOG = LoggerFactory.getLogger(SimpleUnzip.class);
public static void main(String[] args){
Pipeline p = Pipeline.create(
PipelineOptionsFactory.fromArgs(args).withValidation().create());
GcsUtilFactory factory = new GcsUtilFactory();
GcsUtil util = factory.create(p.getOptions());
try{
List<GcsPath> gcsPaths = util.expand(GcsPath.fromUri("gs://tlogdataflow/test/*.zip"));
List<String> paths = new ArrayList<String>();
for(GcsPath gcsp: gcsPaths){
paths.add(gcsp.toString());
}
p.apply(Create.of(paths))
.apply(ParDo.of(new UnzipFN()));
p.run();
}
catch(Exception e){
LOG.error(e.getMessage());
}
}
public static class UnzipFN extends DoFn<String,Long>{
private static final long serialVersionUID = 2015166770614756341L;
private long filesUnzipped=0;
#Override
public void processElement(ProcessContext c){
String p = c.element();
GcsUtilFactory factory = new GcsUtilFactory();
GcsUtil u = factory.create(c.getPipelineOptions());
byte[] buffer = new byte[100000000];
try{
SeekableByteChannel sek = u.open(GcsPath.fromUri(p));
InputStream is = Channels.newInputStream(sek);
BufferedInputStream bis = new BufferedInputStream(is);
ZipInputStream zis = new ZipInputStream(bis);
ZipEntry ze = zis.getNextEntry();
while(ze!=null){
LOG.info("Unzipping File {}",ze.getName());
WritableByteChannel wri = u.create(GcsPath.fromUri("gs://tlogdataflow/test/" + ze.getName()), getType(ze.getName()));
OutputStream os = Channels.newOutputStream(wri);
int len;
while((len=zis.read(buffer))>0){
os.write(buffer,0,len);
}
os.close();
filesUnzipped++;
ze=zis.getNextEntry();
}
zis.closeEntry();
zis.close();
}
catch(Exception e){
e.printStackTrace();
}
c.output(filesUnzipped);
}
private String getType(String fName){
if(fName.endsWith(".zip")){
return "application/x-zip-compressed";
}
else {
return "text/plain";
}
}
}
}

Dataflow / Apache Beam support ZIP-compressed files in TextIO automatically: TextIO.read().from(filepattern) will automatically decompress files matching the filepattern according to their extension, and .zip is one of the supported formats - in that case it will implicitly concatenate all files inside the .zip into a single file, and parse lines of text from that.
You can also specify compression type explicitly using TextIO.read().from(filepattern).withCompressionType(...) if the files don't have an extension.

Related

Does Apache Beam support custom file names for its output?

While in a distributed processing environment it is common to use "part" file names such as "part-000", is it possible to write an extension of some sort to rename the individual output file names (such as a per window file name) of Apache Beam?
To do this, one might have to be able to assign a name for a window or infer a file name based on the window's content. I would like to know if such an approach is possible.
As to whether the solution should be streaming or batch, a streaming mode example is preferable
Yes as suggested by jkff you can achieve this using TextIO.write.to(FilenamePolicy).
Examples are below:
If you want to write output to particular local file you can use:
lines.apply(TextIO.write().to("/path/to/file.txt"));
Below is the simple way to write the output using the prefix, link. This example is for google storage, instead of this you can use local/s3 paths.
public class MinimalWordCountJava8 {
public static void main(String[] args) {
PipelineOptions options = PipelineOptionsFactory.create();
// In order to run your pipeline, you need to make following runner specific changes:
//
// CHANGE 1/3: Select a Beam runner, such as BlockingDataflowRunner
// or FlinkRunner.
// CHANGE 2/3: Specify runner-required options.
// For BlockingDataflowRunner, set project and temp location as follows:
// DataflowPipelineOptions dataflowOptions = options.as(DataflowPipelineOptions.class);
// dataflowOptions.setRunner(BlockingDataflowRunner.class);
// dataflowOptions.setProject("SET_YOUR_PROJECT_ID_HERE");
// dataflowOptions.setTempLocation("gs://SET_YOUR_BUCKET_NAME_HERE/AND_TEMP_DIRECTORY");
// For FlinkRunner, set the runner as follows. See {#code FlinkPipelineOptions}
// for more details.
// options.as(FlinkPipelineOptions.class)
// .setRunner(FlinkRunner.class);
Pipeline p = Pipeline.create(options);
p.apply(TextIO.read().from("gs://apache-beam-samples/shakespeare/*"))
.apply(FlatMapElements
.into(TypeDescriptors.strings())
.via((String word) -> Arrays.asList(word.split("[^\\p{L}]+"))))
.apply(Filter.by((String word) -> !word.isEmpty()))
.apply(Count.<String>perElement())
.apply(MapElements
.into(TypeDescriptors.strings())
.via((KV<String, Long> wordCount) -> wordCount.getKey() + ": " + wordCount.getValue()))
// CHANGE 3/3: The Google Cloud Storage path is required for outputting the results to.
.apply(TextIO.write().to("gs://YOUR_OUTPUT_BUCKET/AND_OUTPUT_PREFIX"));
p.run().waitUntilFinish();
}
}
This example code will give you more control on writing the output:
/**
* A {#link FilenamePolicy} produces a base file name for a write based on metadata about the data
* being written. This always includes the shard number and the total number of shards. For
* windowed writes, it also includes the window and pane index (a sequence number assigned to each
* trigger firing).
*/
protected static class PerWindowFiles extends FilenamePolicy {
private final ResourceId prefix;
public PerWindowFiles(ResourceId prefix) {
this.prefix = prefix;
}
public String filenamePrefixForWindow(IntervalWindow window) {
String filePrefix = prefix.isDirectory() ? "" : prefix.getFilename();
return String.format(
"%s-%s-%s", filePrefix, formatter.print(window.start()), formatter.print(window.end()));
}
#Override
public ResourceId windowedFilename(int shardNumber,
int numShards,
BoundedWindow window,
PaneInfo paneInfo,
OutputFileHints outputFileHints) {
IntervalWindow intervalWindow = (IntervalWindow) window;
String filename =
String.format(
"%s-%s-of-%s%s",
filenamePrefixForWindow(intervalWindow),
shardNumber,
numShards,
outputFileHints.getSuggestedFilenameSuffix());
return prefix.getCurrentDirectory().resolve(filename, StandardResolveOptions.RESOLVE_FILE);
}
#Override
public ResourceId unwindowedFilename(
int shardNumber, int numShards, OutputFileHints outputFileHints) {
throw new UnsupportedOperationException("Unsupported.");
}
}
#Override
public PDone expand(PCollection<InputT> teamAndScore) {
if (windowed) {
teamAndScore
.apply("ConvertToRow", ParDo.of(new BuildRowFn()))
.apply(new WriteToText.WriteOneFilePerWindow(filenamePrefix));
} else {
teamAndScore
.apply("ConvertToRow", ParDo.of(new BuildRowFn()))
.apply(TextIO.write().to(filenamePrefix));
}
return PDone.in(teamAndScore.getPipeline());
}
Yes. Per documentation of TextIO:
If you want better control over how filenames are generated than the default policy allows, a custom FilenamePolicy can also be set using TextIO.Write.to(FilenamePolicy)
This is perfectly valid example with beam 2.1.0. You can call on your data (PCollection e.g)
import org.apache.beam.sdk.io.FileBasedSink.FilenamePolicy;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.io.fs.ResolveOptions.StandardResolveOptions;
import org.apache.beam.sdk.io.fs.ResourceId;
import org.apache.beam.sdk.transforms.display.DisplayData;
#SuppressWarnings("serial")
public class FilePolicyExample {
public static void main(String[] args) {
FilenamePolicy policy = new WindowedFilenamePolicy("somePrefix");
//data
data.apply(TextIO.write().to("your_DIRECTORY")
.withFilenamePolicy(policy)
.withWindowedWrites()
.withNumShards(4));
}
private static class WindowedFilenamePolicy extends FilenamePolicy {
final String outputFilePrefix;
WindowedFilenamePolicy(String outputFilePrefix) {
this.outputFilePrefix = outputFilePrefix;
}
#Override
public ResourceId windowedFilename(
ResourceId outputDirectory, WindowedContext input, String extension) {
String filename = String.format(
"%s-%s-%s-of-%s-pane-%s%s%s",
outputFilePrefix,
input.getWindow(),
input.getShardNumber(),
input.getNumShards() - 1,
input.getPaneInfo().getIndex(),
input.getPaneInfo().isLast() ? "-final" : "",
extension);
return outputDirectory.resolve(filename, StandardResolveOptions.RESOLVE_FILE);
}
#Override
public ResourceId unwindowedFilename(
ResourceId outputDirectory, Context input, String extension) {
throw new UnsupportedOperationException("Expecting windowed outputs only");
}
#Override
public void populateDisplayData(DisplayData.Builder builder) {
builder.add(DisplayData.item("fileNamePrefix", outputFilePrefix)
.withLabel("File Name Prefix"));
}
}
}
You can check https://beam.apache.org/releases/javadoc/2.3.0/org/apache/beam/sdk/io/FileIO.html for more information, you should search "File naming" in "Writing files".
.apply(
FileIO.<RootElement>write()
.via(XmlIO
.sink(RootElement.class)
.withRootElement(ROOT_XML_ELEMENT)
.withCharset(StandardCharsets.UTF_8))
.to(FILE_PATH)
.withNaming((window, pane, numShards, shardIndex, compression) -> NEW_FILE_NAME)

Element value based writing to Google Cloud Storage using Dataflow

I'm trying to build a dataflow process to help archive data by storing data into Google Cloud Storage. I have a PubSub stream of Event data which contains the client_id and some metadata. This process should archive all incoming events, so this needs to be a streaming pipeline.
I'd like to be able to handle archiving the events by putting each Event I receive inside a bucket that looks like gs://archive/client_id/eventdata.json . Is that possible to do within dataflow/apache beam, specifically being able to assign the file name differently for each Event in the PCollection?
EDIT:
So my code currently looks like:
public static class PerWindowFiles extends FileBasedSink.FilenamePolicy {
private String customerId;
public PerWindowFiles(String customerId) {
this.customerId = customerId;
}
#Override
public ResourceId windowedFilename(ResourceId outputDirectory, WindowedContext context, String extension) {
String filename = bucket+"/"+customerId;
return outputDirectory.resolve(filename, ResolveOptions.StandardResolveOptions.RESOLVE_FILE);
}
#Override
public ResourceId unwindowedFilename(
ResourceId outputDirectory, Context context, String extension) {
throw new UnsupportedOperationException("Unsupported.");
}
}
public static void main(String[] args) throws IOException {
DataflowPipelineOptions options = PipelineOptionsFactory.fromArgs(args)
.withValidation()
.as(DataflowPipelineOptions.class);
options.setRunner(DataflowRunner.class);
options.setStreaming(true);
Pipeline p = Pipeline.create(options);
PCollection<Event> set = p.apply(PubsubIO.readStrings()
.fromTopic("topic"))
.apply(new ConvertToEvent()));
PCollection<KV<String, Event>> events = labelEvents(set);
PCollection<KV<String, EventGroup>> sessions = groupEvents(events);
String customers = System.getProperty("CUSTOMERS");
JSONArray custList = new JSONArray(customers);
for (Object cust : custList) {
if (cust instanceof String) {
String customerId = (String) cust;
PCollection<KV<String, EventGroup>> custCol = sessions.apply(new FilterByCustomer(customerId));
stringifyEvents(custCol)
.apply(TextIO.write()
.to("gs://archive/")
.withFilenamePolicy(new PerWindowFiles(customerId))
.withWindowedWrites()
.withNumShards(3));
} else {
LOG.info("Failed to create TextIO: customerId was not String");
}
}
p.run()
.waitUntilFinish();
}
This code is ugly because I need to redeploy every time a new client happens in order to be able to save their data. I would prefer to be able to assign customer data to an appropriate bucket dynamically.
"Dynamic destinations" - choosing the file name based on the elements being written - will be a new feature available in Beam 2.1.0, which has not yet been released.

Execute read operations in sequence - Apache Beam

I need to execute below operations in sequence as given:-
PCollection<String> read = p.apply("Read Lines",TextIO.read().from(options.getInputFile()))
.apply("Get fileName",ParDo.of(new DoFn<String,String>(){
ValueProvider<String> fileReceived = options.getfilename();
#ProcessElement
public void procesElement(ProcessContext c)
{
fileName = fileReceived.get().toString();
LOG.info("File: "+fileName);
}
}));
PCollection<TableRow> rows = p.apply("Read from BigQuery",
BigQueryIO.read()
.fromQuery("SELECT table,schema FROM `DatasetID.TableID` WHERE file='" + fileName +"'")
.usingStandardSql());
How to accomplish this in Apache Beam/Dataflow?
It seems that you want to apply BigQueryIO.read().fromQuery() to a query that depends on a value available via a property of type ValueProvider<String> in your PipelineOptions, and the provider is not accessible at pipeline construction time - i.e. you are invoking your job via a template.
In that case, the proper solution is to use NestedValueProvider:
PCollection<TableRow> tableRows = p.apply(BigQueryIO.read().fromQuery(
NestedValueProvider.of(
options.getfilename(),
new SerializableFunction<String, String>() {
#Override
public String apply(String filename) {
return "SELECT table,schema FROM `DatasetID.TableID` WHERE file='" + fileName +"'";
}
})));

Sharing BigTable Connection object among DataFlow DoFn sub-classes

I am setting up a Java Pipeline in DataFlow to read a .csv file and to create a bunch of BigTable rows based on the content of the file. I see in the BigTable documentation the note that connecting to BigTable is an 'expensive' operation and that it's a good idea to do it only once and to share the connection among the functions that need it.
However, if I declare the Connection object as a public static variable in the main class and first connect to BigTable in the main function, I get the NullPointerException when I subsequently try to reference the connection in instances of DoFn sub-classes' processElement() function as part of my DataFlow pipeline.
Conversely, if I declare the Connection as a static variable in the actual DoFn class, then the operation works successfully.
What is the best-practice or optimal way to do this?
I'm concerned that if I implement the second option at scale, I will be wasting a lot of time and resources. If I keep the variable as static in the DoFn class, is it enough to ensure that the APIs don't try to re-establish the connection every time?
I realize there is a special BigTable I/O call to sync DataFlow pipeline objects with BigTable, but I think I need to write one on my own to build-in some special logic into the DoFn processElement() function...
This is what the "working" code looks like:
class DigitizeBT extends DoFn<String, String>{
private static Connection m_locConn;
#Override
public void processElement(ProcessContext c)
{
try
{
m_locConn = BigtableConfiguration.connect("projectID", "instanceID");
Table tbl = m_locConn.getTable(TableName.valueOf("TableName"));
Put put = new Put(Bytes.toBytes(rowKey));
put.addColumn(
Bytes.toBytes("CF1"),
Bytes.toBytes("SomeName"),
Bytes.toBytes("SomeValue"));
tbl.put(put);
}
catch (IOException e)
{
e.printStackTrace();
System.exit(1);
}
}
}
This is what updated code looks like, FYI:
public void SmallKVJob()
{
CloudBigtableScanConfiguration config = new CloudBigtableScanConfiguration.Builder()
.withProjectId(DEF.ID_PROJ)
.withInstanceId(DEF.ID_INST)
.withTableId(DEF.ID_TBL_UNITS)
.build();
DataflowPipelineOptions options = PipelineOptionsFactory.as(DataflowPipelineOptions.class);
options.setProject(DEF.ID_PROJ);
options.setStagingLocation(DEF.ID_STG_LOC);
// options.setNumWorkers(3);
// options.setMaxNumWorkers(5);
// options.setRunner(BlockingDataflowPipelineRunner.class);
options.setRunner(DirectPipelineRunner.class);
Pipeline p = Pipeline.create(options);
p.apply(TextIO.Read.from(DEF.ID_BAL))
.apply(ParDo.of(new DoFn1()))
.apply(ParDo.of(new DoFn2()))
.apply(ParDo.of(new DoFn3(config)));
m_log.info("starting to run the job");
p.run();
m_log.info("finished running the job");
}
}
class DoFn1 extends DoFn<String, KV<String, Integer>>
{
#Override
public void processElement(ProcessContext c)
{
c.output(KV.of(c.element().split("\\,")[0],Integer.valueOf(c.element().split("\\,")[1])));
}
}
class DoFn2 extends DoFn<KV<String, Integer>, KV<String, Integer>>
{
#Override
public void processElement(ProcessContext c)
{
int max = c.element().getValue();
String name = c.element().getKey();
for(int i = 0; i<max;i++)
c.output(KV.of(name, 1));
}
}
class DoFn3 extends AbstractCloudBigtableTableDoFn<KV<String, Integer>, String>
{
public DoFn3(CloudBigtableConfiguration config)
{
super(config);
}
#Override
public void processElement(ProcessContext c)
{
try
{
Integer max = c.element().getValue();
for(int i = 0; i<max; i++)
{
String owner = c.element().getKey();
String rnd = UUID.randomUUID().toString();
Put p = new Put(Bytes.toBytes(owner+"*"+rnd));
p.addColumn(Bytes.toBytes(DEF.ID_CF1), Bytes.toBytes("Owner"), Bytes.toBytes(owner));
getConnection().getTable(TableName.valueOf(DEF.ID_TBL_UNITS)).put(p);
c.output("Success");
}
} catch (IOException e)
{
c.output(e.toString());
e.printStackTrace();
}
}
}
The input .csv file looks something like this:
Mary,3000
John,5000
Peter,2000
So, for each row in the .csv file, I have to put in x number of rows into BigTable, where x is the second cell in the .csv file...
We built AbstractCloudBigtableTableDoFn ( Source & Docs ) for this purpose. Extend that class instead of DoFn, and call getConnection() instead of creating a Connection yourself.
10,000 small rows should take a second or two of actual work.
EDIT: As per the comments, BufferedMutator should be used instead of Table.put() for best throughput.

tika PackageParser does not work with directories

I am writing a class to recursively extract files from inside a zip file and produce them to a Kafka queue for further processing. My intent is to be able to extract files from multiple levels of zip. The code below is my implementation of the tika ContainerExtractor to do this.
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.Stack;
import org.apache.commons.lang.StringUtils;
import org.apache.tika.config.TikaConfig;
import org.apache.tika.detect.DefaultDetector;
import org.apache.tika.detect.Detector;
import org.apache.tika.exception.TikaException;
import org.apache.tika.extractor.ContainerExtractor;
import org.apache.tika.extractor.EmbeddedResourceHandler;
import org.apache.tika.io.TemporaryResources;
import org.apache.tika.io.TikaInputStream;
import org.apache.tika.metadata.Metadata;
import org.apache.tika.mime.MediaType;
import org.apache.tika.parser.AbstractParser;
import org.apache.tika.parser.AutoDetectParser;
import org.apache.tika.parser.ParseContext;
import org.apache.tika.parser.Parser;
import org.apache.tika.parser.pkg.PackageParser;
import org.xml.sax.ContentHandler;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;
public class UberContainerExtractor implements ContainerExtractor {
/**
*
*/
private static final long serialVersionUID = -6636138154366178135L;
// statically populate SUPPORTED_TYPES
static {
Set<MediaType> supportedTypes = new HashSet<MediaType>();
ParseContext context = new ParseContext();
supportedTypes.addAll(new PackageParser().getSupportedTypes(context));
SUPPORTED_TYPES = Collections.unmodifiableSet(supportedTypes);
}
/**
* A stack that maintains the parent filenames for the recursion
*/
Stack<String> parentFileNames = new Stack<String>();
/**
* The default tika parser
*/
private final Parser parser;
/**
* Default tika detector
*/
private final Detector detector;
/**
* The supported container types into which we can recurse
*/
public final static Set<MediaType> SUPPORTED_TYPES;
/**
* The number of documents recursively extracted from the container and its
* children containers if present
*/
int extracted;
public UberContainerExtractor() {
this(TikaConfig.getDefaultConfig());
}
public UberContainerExtractor(TikaConfig config) {
this(new DefaultDetector(config.getMimeRepository()));
}
public UberContainerExtractor(Detector detector) {
this.parser = new AutoDetectParser(new PackageParser());
this.detector = detector;
}
public boolean isSupported(TikaInputStream input) throws IOException {
MediaType type = detector.detect(input, new Metadata());
return SUPPORTED_TYPES.contains(type);
}
#Override
public void extract(TikaInputStream stream, ContainerExtractor recurseExtractor, EmbeddedResourceHandler handler)
throws IOException, TikaException {
ParseContext context = new ParseContext();
context.set(Parser.class, new RecursiveParser(recurseExtractor, handler));
try {
Metadata metadata = new Metadata();
parser.parse(stream, new DefaultHandler(), metadata, context);
} catch (SAXException e) {
throw new TikaException("Unexpected SAX exception", e);
}
}
private class RecursiveParser extends AbstractParser {
/**
*
*/
private static final long serialVersionUID = -7260171956667273262L;
private final ContainerExtractor extractor;
private final EmbeddedResourceHandler handler;
private RecursiveParser(ContainerExtractor extractor, EmbeddedResourceHandler handler) {
this.extractor = extractor;
this.handler = handler;
}
public Set<MediaType> getSupportedTypes(ParseContext context) {
return parser.getSupportedTypes(context);
}
public void parse(InputStream stream, ContentHandler ignored, Metadata metadata, ParseContext context)
throws IOException, SAXException, TikaException {
TemporaryResources tmp = new TemporaryResources();
try {
TikaInputStream tis = TikaInputStream.get(stream, tmp);
// Figure out what we have to process
String filename = metadata.get(Metadata.RESOURCE_NAME_KEY);
MediaType type = detector.detect(tis, metadata);
if (extractor == null) {
// do nothing
} else {
// Use a temporary file to process the stream
File file = tis.getFile();
System.out.println("file is directory = " + file.isDirectory());
// Recurse and extract if the filetype is supported
if (SUPPORTED_TYPES.contains(type)) {
System.out.println("encountered a supported file:" + filename);
parentFileNames.push(filename);
extractor.extract(tis, extractor, handler);
parentFileNames.pop();
} else { // produce the file
List<String> parentFilenamesList = new ArrayList<String>(parentFileNames);
parentFilenamesList.add(filename);
String originalFilepath = StringUtils.join(parentFilenamesList, "/");
System.out.println("producing " + filename + " with originalFilepath:" + originalFilepath
+ " to kafka queue");
++extracted;
}
}
} finally {
tmp.dispose();
}
}
}
public int getExtracted() {
return extracted;
}
public static void main(String[] args) throws IOException, TikaException {
String filename = "/Users/rohit/Data/cd.zip";
File file = new File(filename);
TikaInputStream stream = TikaInputStream.get(file);
ContainerExtractor recursiveExtractor = new UberContainerExtractor();
EmbeddedResourceHandler resourceHandler = new EmbeddedResourceHandler() {
#Override
public void handle(String filename, MediaType mediaType, InputStream stream) {
// do nothing
}
};
recursiveExtractor.extract(stream, recursiveExtractor, resourceHandler);
stream.close();
System.out.println("extracted " + ((UberContainerExtractor) recursiveExtractor).getExtracted() + " files");
}
}
It works on multiple levels of zip as long as the files inside the zips are in a flat structure. for ex.
cd.zip
- c.txt
- d.txt
The code does not work if there the files in the zip are present inside a directory. for ex.
ab.zip
- ab/
- a.txt
- b.txt
While debugging I came across the following code snippet in the PackageParser
try {
ArchiveEntry entry = ais.getNextEntry();
while (entry != null) {
if (!entry.isDirectory()) {
parseEntry(ais, entry, extractor, xhtml);
}
entry = ais.getNextEntry();
}
} finally {
ais.close();
}
I tried to comment out the if condition but it did not work. Is there a reason why this is commented? Is there any way of getting around this?
I am using tika version 1.6
Tackling your question in reverse order:
Is there a reason why this is commented?
Entries in zip files are either directories or files. If files, they include the name of the directory they come from. As such, Tika doesn't need to do anything with the directories, all it needs to do is process the embedded files as and when they come up
The code does not work if there the files in the zip are present inside a directory. for ex. ab.zip - ab/ - a.txt - b.txt
You seem to be doing something wrong then. Tika's recursion and package parser handle zips with folders in them just fine!
To prove this, start with a zip file like this:
$ unzip -l ../tt.zip
Archive: ../tt.zip
Length Date Time Name
--------- ---------- ----- ----
0 2015-02-03 16:42 t/
0 2015-02-03 16:42 t/t2/
0 2015-02-03 16:42 t/t2/t3/
164404 2015-02-03 16:42 t/t2/t3/test.jpg
--------- -------
164404 4 files
Now, make us of the -z extraction flag of the Tika App, which causes Tika to extract out all of the embedded contents of a file. Run like that, and we get
$ java -jar tika-app-1.7.jar -z ../tt.zip
Extracting 't/t2/t3/test.jpg' (image/jpeg) to ./t/t2/t3/test.jpg
Then list the resulting directory, and we see
$ find . -type f
./t/t2/t3/Test.jpg
I can't see what's wrong with your code, but sadly for you we've shown that the problem is there, and not with Tika... You'd be best off reviewing the various examples of recursion that Tika provides, such as the Tika App tool and the Recursing Parser Wrapper, then re-write your code to be something simple based from those

Resources