Neural Network giving wrong outputs - delphi
I am trying to get my first neural network working, though no matter what I do, the network never seems to get to the correct answer.
Here is the output after the network reached an MSE of 0.0001
0 XOR 0 = 0.0118003716248665
1 XOR 1 = 0.994320073237859
1 XOR 0 = 0.818618888320916
0 XOR 1 = 0.985995457430471
The problem: these answers are incorrect.
I create a network with 2 inputs, 2 hidden neurons, and 1 output, the XOR problem has been solved using the same amounts, so that possibility is ruled out (I guess).
As a side note, I converted this code from a C# example found on another site, the C# code executes and works perfectly, so this is most likely a logic error or miscalculation somewhere :/
Now, unfortunately I have been totally unable to find the relevant piece of code leading up to the error, so I am going to have to post the entire code involving the Network here (sorry).
Edit: The UpdateWeights() function is the Back propagation, just thought I'd put this here in-case someone didn't catch it, the rest of the names and stuff is pretty understandable.
unit NeuralNetwork_u;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, Math;
type TDoubleArray = array of Double;
type TDouble2DArray = array of TDoubleArray;
type TNeuralNetwork = class(TObject)
private
numInput, numHidden, numOutput : Integer;
inputs, hBiases, hSums, hOutputs, oBiases, oSums, Outputs, oGrads, hGrads, hPrevBiasesDelta, oPrevBiasesDelta : TDoubleArray;
ihWeights, hoWeights, ihPrevWeightsDelta, hoPrevWeightsDelta : TDouble2DArray;
public
constructor Create(NumInputs, NumHiddens, NumOutputs : Integer);
procedure SetWeights(weights : TDoubleArray);
function GetWeights : TDoubleArray;
function GetOutputs : TDoubleArray;
function ComputeOutputs( xvalues : TDoubleArray) : TDoubleArray;
function SigmoidFunction( X : Double) : Double;
function HyperTanFunction( X: Double) : Double;
procedure UpdateWeights( tValues : TDoubleArray ; learn, mom : Double);
function Train( TrainData : TDouble2DArray ; MaxEpochs : Integer ; LearningRate, Momentum, DesiredError : Double) : Double;
function WeightCount : Integer;
procedure Shuffle(Seq : array of Integer);
function MeanSquaredError(TrainData : TDouble2DArray) : Double;
end;
type THelper = class(TObject)
public
function MakeMatrix( Rows, Cols : Integer) : TDouble2DArray;
function Error(tValues, yValues : array of Double) : Double;
end;
implementation
uses NetworkInterface_u;
constructor TNeuralNetwork.Create(NumInputs, NumHiddens, NumOutputs : Integer);
var
Helper : THelper;
begin
Helper := THelper.Create;
numInput := NumInputs;
numHidden := NumHiddens;
numOutput := NumOutputs;
SetLength(inputs,numInput);
ihWeights := Helper.MakeMatrix(numInput, numHidden);
SetLength(hBiases,numHidden);
SetLength(hSums, numHidden);
SetLength(hOutputs, numHidden);
howeights := Helper.makeMatrix(numHidden, numOutput);
SetLength(oBiases,numOutput);
SetLength(oSums, numOutput);
SetLength(Outputs, numOutput);
SetLength(oGrads,numOutput);
SetLength(hGrads,numHidden);
ihPrevWeightsDelta := Helper.makeMatrix(numInput,numHidden);
SetLength(hPrevBiasesDelta,numHidden);
hoPrevWeightsDelta := Helper.makeMatrix(numHidden,numOutput);
SetLength(oPrevBiasesDelta,numOutput);
end;
unit NeuralNetwork_u;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, ComCtrls, Math;
type TDoubleArray = array of Double;
type TDouble2DArray = array of TDoubleArray;
type TNeuralNetwork = class(TObject)
private
numInput, numHidden, numOutput : Integer;
inputs, hBiases, hSums, hOutputs, oBiases, oSums, Outputs, oGrads, hGrads, hPrevBiasesDelta, oPrevBiasesDelta : TDoubleArray;
ihWeights, hoWeights, ihPrevWeightsDelta, hoPrevWeightsDelta : TDouble2DArray;
public
constructor Create(NumInputs, NumHiddens, NumOutputs : Integer);
procedure SetWeights(weights : TDoubleArray);
function GetWeights : TDoubleArray;
function GetOutputs : TDoubleArray;
function ComputeOutputs( xvalues : TDoubleArray) : TDoubleArray;
function SigmoidFunction( X : Double) : Double;
function HyperTanFunction( X: Double) : Double;
procedure UpdateWeights( tValues : TDoubleArray ; learn, mom : Double);
function Train( TrainData : TDouble2DArray ; MaxEpochs : Integer ; LearningRate, Momentum, DesiredError : Double) : Double;
function WeightCount : Integer;
procedure Shuffle( var Seq : array of Integer);
function MeanSquaredError(TrainData : TDouble2DArray) : Double;
end;
type THelper = class(TObject)
public
function MakeMatrix( Rows, Cols : Integer) : TDouble2DArray;
function Error(tValues, yValues : array of Double) : Double;
end;
implementation
uses NetworkInterface_u;
constructor TNeuralNetwork.Create(NumInputs, NumHiddens, NumOutputs : Integer);
var
Helper : THelper;
begin
Helper := THelper.Create;
numInput := NumInputs;
numHidden := NumHiddens;
numOutput := NumOutputs;
SetLength(inputs,numInput);
ihWeights := Helper.MakeMatrix(numInput, numHidden);
SetLength(hBiases,numHidden);
SetLength(hSums, numHidden);
SetLength(hOutputs, numHidden);
howeights := Helper.makeMatrix(numHidden, numOutput);
SetLength(oBiases,numOutput);
SetLength(oSums, numOutput);
SetLength(Outputs, numOutput);
SetLength(oGrads,numOutput);
SetLength(hGrads,numHidden);
ihPrevWeightsDelta := Helper.makeMatrix(numInput,numHidden);
SetLength(hPrevBiasesDelta,numHidden);
hoPrevWeightsDelta := Helper.makeMatrix(numHidden,numOutput);
SetLength(oPrevBiasesDelta,numOutput);
end;
procedure TNeuralNetwork.SetWeights(weights : TDoubleArray);
var
numWeights : Integer;
i, k, j : Integer;
begin
numWeights := (numInput * numHidden) + (numHidden * numOutput) + numHidden + numOutput;
if High(weights) <> numWeights then
begin
Raise Exception.Create('The Weights Array Length Does Not match The Total Number Of Weights And Biases - ' + IntToStr(numWeights));
end;
k := 0;
for i := 0 to numInput-1 do
begin
for j := 0 to numHidden-1 do
begin
ihWeights[i][j] := weights[k];
Inc(k);
end;
end;
for i := 0 to numHidden-1 do
begin
hBiases[i] := weights[k];
Inc(k);
end;
for i := 0 to numHidden-1 do
begin
for j := 0 to numOutput-1 do
begin
hoWeights[i][j] := weights[k];
Inc(k);
end;
end;
for i := 0 to numOutput-1 do
begin
oBiases[i] := weights[k];
Inc(k);
end;
end;
function TNeuralNetwork.GetWeights : TDoubleArray;
var
numWeights : Integer;
k, i, j : Integer;
begin
numWeights := (numInput * numHidden) + (numHidden * numOutput) + numHidden + numOutput;
SetLength(Result,numWeights);
k := 0;
for i := 0 to Length(ihWeights)-1 do
begin
for j := 0 to Length(ihWeights[0])-1 do
begin
Result[k] := ihWeights[i][j];
Inc(k);
end;
end;
for i := 0 to Length(hBiases)-1 do
begin
Result[k] := hBiases[i];
Inc(k);
end;
for i := 0 to Length(hoWeights)-1 do
begin
for j := 0 to Length(hoWeights[0])-1 do
begin
Result[k] := hoWeights[i][j] ;
Inc(k);
end;
end;
for i := 0 to Length(oBiases)-1 do
begin
Result[k] := oBiases[i];
Inc(k);
end;
end;
function TNeuralnetwork.GetOutputs : TDoubleArray;
begin
SetLength(Result, numOutput-1);
Result := Outputs;
end;
Function TNeuralNetwork.ComputeOutputs( xValues : TDoubleArray) : TDoubleArray;
var
i, j : Integer;
begin
if Length(xvalues) <> numInput then
begin
raise Exception.Create('Inputs Array Does Not Match Neural Network Inputs Count = Array ' + IntToStr(Length(xValues)) + ' Input Count ' + IntToStr(numInput));
end;
for i := 0 to numHidden-1 do
begin
hSums[i] := 0.0;
end;
for i := 0 to numOutput-1 do
begin
oSums[i] := 0.0;
end;
for i := 0 to Length(xValues)-1 do
begin
inputs[i] := xValues[i];
end;
for j := 0 to numHidden-1 do
begin
for i := 0 to numInput-1 do
begin
hSums[j] := hSums[j] + (inputs[i]*ihWeights[i][j]);
end;
end;
for i := 0 to numHidden-1 do
begin
hSums[i] := hSums[i] + hBiases[i];
end;
for i := 0 to numHidden-1 do
begin
hOutputs[i] := HyperTanFunction(hSums[i]);
end;
for j := 0 to numOutput-1 do
begin
for i := 0 to numHidden-1 do
begin
oSums[j] := oSums[j] + (hOutputs[i] * hoWeights[i][j]);
end;
end;
for i := 0 to numOutput-1 do
begin
oSums[i] := oSums[i] + oBiases[i];
end;
for i := 0 to numOutput-1 do
begin
Outputs[i] := HyperTanFunction(oSums[i]);
end;
Result := Outputs;
end;
function TNeuralNetwork.SigmoidFunction(X : Double) : Double;
begin
if x < -45.0 then
Result := 0
else if x > 45.0 then
Result := 1
else
Result := 1.0 / (1.0 + Exp(-x));
end;
function TNeuralNetwork.HyperTanFunction( X : Double) : Double;
begin
if x < -45.0 then
Result := -1
else if x > 45.0 then
Result := 1
else
Result := Tanh(X);
end;
procedure TNeuralNetwork.UpdateWeights(tValues : TDoubleArray ; learn, mom : Double);
var
i, j : Integer;
derivative, sum, delta,X : Double;
begin
if Length(tValues) <> numOutput then
begin
Raise Exception.Create('Target Values Not Same Length As Output = ' + IntToStr(Length(tValues)) + ' - Outputcount = ' + IntToStr(numOutput));
end;
for i := 0 to Length(oGrads)-1 do
begin
derivative := (1 - outputs[i]) * outputs[i];
oGrads[i] := derivative * (tValues[i] - outputs[i]);
end;
for i := 0 to Length(hGrads)-1 do
begin
derivative := (1 - hOutputs[i]) * (1 + hOutputs[i]);
sum := 0;
for j := 0 to numOutput-1 do
begin
X := oGrads[j] * hoWeights[i][j];
sum := sum + X;
end;
hGrads[i] := derivative * sum;
end;
for i := 0 to Length(ihWeights)-1 do
begin
for j := 0 to Length(ihWeights[0])-1 do
begin
delta := learn * hGrads[j] * inputs[i];
ihWeights[i][j] := ihWeights[i][j] + delta;
ihWeights[i][j] := ihWeights[i][j] + (mom * ihPrevWeightsDelta[i][j]);
ihPrevWeightsDelta[i][j] := delta;
end;
end;
for i := 0 to Length(hBiases)-1 do
begin
delta := learn * hGrads[i] * 1.0;
hBiases[i] := hBiases[i] + delta;
hBiases[i] := hBiases[i] + (mom * hPrevBiasesDelta[i]);
hPrevBiasesDelta[i] := delta;
end;
for i := 0 to Length(hoWeights)-1 do
begin
for j := 0 to Length(hoWeights[0])-1 do
begin
delta := learn * oGrads[j] * hOutputs[i];
hoWeights[i][j] := hoWeights[i][j] + delta;
hoWeights[i][j] := hoWeights[i][j] + (mom * hoPrevWeightsDelta[i][j]);
hoPrevWeightsDelta[i][j] := delta;
end;
end;
for i := 0 to Length(oBiases)-1 do
begin
delta := learn * oGrads[i] * 1.0;
oBiases[i] := oBiases[i] + delta;
oBiases[i] := oBiases[i] + (mom * oPrevBiasesDelta[i]);
oPrevBiasesDelta[i] := delta;
end;
end;
function TNeuralNetwork.Train( TrainData : TDouble2DArray ; MaxEpochs : Integer ; LearningRate, Momentum, DesiredError : Double) : Double;
var
Epoch, I, Idx, c : Integer;
xValues : TDoubleArray;
tValues : TDoubleArray;
Sequence : Array of Integer;
MeanSquaredErrorr : Double;
Helper : THelper;
begin
Epoch := 0;
SetLength(xValues,numInput);
SetLength(tValues,numOutput+1);
SetLength(Sequence,Length(TrainData));
for I := 0 to Length(Sequence)-1 do
Sequence[I] := I;
Shuffle(Sequence);
while Epoch < MaxEpochs do
begin
frmNetworkInterface.redTraining.Lines.Add('Current Epoch - ' + IntToStr(Epoch) + ' : error = ' + FloatToStr(MeanSquaredErrorr) + ' and Desired Error is = ' + FloatToStr(DesiredError));
Application.ProcessMessages;
MeanSquaredErrorr := MeanSquaredError(TrainData);
if MeanSquaredErrorr < DesiredError then
Break;
for I := 0 to Length(TrainData)-1 do
begin
Idx := Sequence[i];
xValues := Copy(TrainData[Idx],0,numInput);
tValues := Copy(TrainData[Idx],numInput,numOutput);
ComputeOutputs(xValues);
UpdateWeights(tValues,LearningRate,Momentum);
end;
Inc(Epoch);
Result := MeanSquaredErrorr;
end;
end;
procedure TNeuralNetwork.Shuffle( var Seq : array of Integer);
var
I, R, Tmp : Integer;
begin
for I := 0 to Length(Seq)-1 do
begin
R := RandomRange(i,Length(Seq));
Tmp := Seq[i];
Seq[R] := Seq[I];
Seq[I] := Tmp;
end;
end;
function TNeuralNetwork.MeanSquaredError(TrainData : TDouble2DArray) : Double;
var
sumSquaredError, err : Double;
xValues, tValues, yValues : TDoubleArray;
I, J : Integer;
begin
sumSquaredError := 0;
SetLength(xValues,numInput);
SetLength(tvalues,numOutput);
for I := 0 to Length(TrainData)-1 do
begin
xValues := Copy(TrainData[I],0,numInput);
tValues := Copy(TrainData[I],numInput,numOutput);
yValues := ComputeOutputs(xValues);
for J := 0 to numOutput-1 do
begin
err := tValues[j] - yValues[j];
sumSquaredError := sumSquaredError + (err * err);
end;
end;
Result := sumSquaredError / Length(TrainData);
end;
function TNeuralNetwork.WeightCount : Integer;
begin
Result := (numInput * numHidden) + (numHidden * numOutput) + numHidden + numOutput;
end;
function THelper.MakeMatrix(Rows, Cols : Integer) : TDouble2DArray;
begin
SetLength(Result,Rows,Cols);
end;
function THelper.Error(tValues : array of Double ; yValues : array of Double) : Double;
var
sum : Double;
i : Integer;
begin
sum := 0.0;
for i := 0 to High(tValues)-1 do
begin
sum := sum + ((tValues[i] - yValues[i]) * (tValues[i] - yValues[i]));
end;
Result := Sqrt(sum);
end;
end.
I have been through this code nearly a hundred times now, and no answer comes to light, no logic error or miscalculation found, however, as I know the C# example works, this should too.
EDIT :
Observation: it seems to me, whenever the second value I pass in is 1, the network automatically makes the output way too big (values of the weights involved with the second input are way too large for my tastes?), hence 1 XOR 1 is wrong, because the second value is 1 (see the data above).
EDIT :
Here is the initial weights of one network i just ran (2 input, 2 hidden, 1 output)
Initial Weight0 - 0.0372207039175555
Initial Weight1 - 0.01092082898831
Initial Weight2 - 0.0755334409791976
Initial Weight3 - 0.0866588755254634
Initial Weight4 - 0.0626101282471791
Initial Weight5 - 0.0365478269639425
Initial Weight6 - 0.0724486718699336
Initial Weight7 - 0.0320405319170095
Initial Weight8 - 0.0680674042692408
And after 132 Epochs (an error of 0.001)
Final Weight 0 = 0.432341693850932
Final Weight 1 = 0.338041456780997
Final Weight 2 = 1.0096817584107
Final Weight 3 = 0.839104863469981
Final Weight 4 = -0.275763414588823
Final Weight 5 = -0.171414938983027
Final Weight 6 = 1.26394969109634
Final Weight 7 = 0.998915778388676
Final Weight 8 = 0.549501870374428
EDIT: So a new development has come to light, an error when passing in the TrainingData caused it to identify 1 XOR 1 = 1, however, after fixing this error, the network cant converge on an answer (ran 100 networks, 10 thousand epochs each) the lowest MSE (Mean Squared Error) I got was
Current Epoch - 9999 : error = 0.487600332892658 and Desired Error is = 0.001
I logged the input and outputs sent into the network on each epoch of training and identified that they all were correct now, so now it just seems that the network is unable to solve the problem?
Also, I'm updating the code to my most recent version. (08/26/2015)
Whats new in this code :
Fixed Copy indices that was 1 instead of 0.
Can confirm that the Inputs and Desired outputs is correctly copied now.
EDIT : The MSE of the network is actually INCREASING now, here is the initial error :
0.467486419821747,
and after 10000 Epochs,
0.487600332892658,
the overall error increased with
0.020113913070917
... This leads me to believe that either my Training procedure, or the UpdateWeights procedure is faulty...
EDIT : Another observation I made, is that the Mean Square Error of the network caps out on 2.5 ( when running an insanely long training session to make it move that much ) The damn MSE is going up instead of going down??
EDIT : Another observation of output of the network whilst training
Current Epoch - 233 : error = 0.802251346201161 and Desired Error is = 0.0001
Current Epoch - 234 : error = 1.24798705066641 and Desired Error is = 0.0001
Current Epoch - 235 : error = 2.47206076545025 and Desired Error is = 0.0001
Current Epoch - 236 : error = 2.49999999811955 and Desired Error is = 0.0001
A radical jump from 1.24 was seen to 2.49 , The network is clearly getting errors in the functions having to do with either training or weight changing.
I suspect from your code that the original works in degrees (because you use constants like -45.0) and Delphi works in radians, so wherever you have 45 you need (PI/4) etc. It is likely that during training you are running out of epochs before you reach the accuracy required because the functions can go out of range.
Related
Logarithmic-linear value conversion
The code below draws a logarithmic grid with DrawGrid(). It seems the vertical lines are ok. When I use the function SetPositionHzValue() the resulting position seems ok (it uses the same logic as the DrawGrid() and seems to match the grid). But how to convert this 0 - 1.0 normalized value, that uses the display width linearly, to an actual Hz value? Why is the function GetPositionsHzValue() wrong? To complicate things, the display has a start frequency (20 Hz in this case) and an end frequency (44100 Hz in this case). procedure TAudioBezierCurves.DrawGrid(Bitmap32: TBitmap32); var GridPosition: Integer; GridPositionF: Double; i: Integer; Base: Double; LogOffsetValue: Double; LogMaxValue: Double; begin GridPosition := 0; Base := 1; if GridFrequencyMin = 0 then begin LogOffsetValue := 0; end else begin LogOffsetValue := Log10(GridFrequencyMin); end; LogMaxValue := Log10(GridFrequencyMax) - LogOffsetValue; repeat for i := 2 to 10 do begin if Base * i < GridFrequencyMin then begin Continue; end; //* This gives the % value relative to the total scale GridPositionF := (Log10(Base * i) - LogOffsetValue) / LogMaxValue; GridPositionF := GridPositionF * Bitmap32.Width; GridPosition := Trunc(GridPositionF); Bitmap32.VertLineS(GridPosition, 0, Bitmap32.Height - 1, GridColor); end; Base := Base * 10; until GridPosition > Bitmap32.Width; end; procedure TAudioBezierCurve.SetPositionHzValue(AValue: Double); var LogOffsetValue: Double; LogMaxValue: Double; begin if AValue = 0 then begin Self.Position := 0; end else begin if Parent.GridFrequencyMin = 0 then begin LogOffsetValue := 0; end else begin LogOffsetValue := Log10(Parent.GridFrequencyMin); end; LogMaxValue := Log10(Parent.GridFrequencyMax) - LogOffsetValue; //* This gives the % value relative to the total scale AValue := (Log10(AValue) - LogOffsetValue) / LogMaxValue; Self.Position := AValue; end; end; function TAudioBezierCurve.GetPositionsHzValue: Double; var AValue: Double; begin AValue := Self.Position; AValue := Power(AValue, 2); Result := AValue * (Parent.GridFrequencyMax); Result := Result - (AValue * Parent.GridFrequencyMin) + Parent.GridFrequencyMin; end; EDIT: Ok, almost ok now. So it seems the correct function is: AValue := Power(AValue, 10); But still not perfect. Changing the display range to min. 0 to 44100, for simplicity, results that setting to the upper value 44100 is ok, the function GetPositionsHzValue() report 41100. But calling setting the position value to 20, GetPositionsHzValue() reports 0. Trying to decrement the position all is fine until 44085, but 44084 value is reported as 44085 and this difference increases with smaller values. Going from lower values, it's 0 until 39, 40 results 1.
In function GetPositionsHzValue, line "AValue := Power(AValue, 2);" where does the value of "AValue" come from? Maybe you should do something like you did in "SetPositionHzValue(AValue: Double);". AValue should be a parameter, not a local variable.
Found the solution, it should be: function TAudioBezierCurve.GetPositionsHzValue: Double; var AValue: Double; begin AValue := Self.Position; AValue := AValue * Log10(Parent.GridFrequencyMax) + (Log10(Parent.GridFrequencyMin) * (1 - AValue)); //* Results "min." at 0 Result := Power(10, AValue); end;
B-Spline Curves coefficients - division by zero (code in DELPHI)
I was trying to implement the following recursive formula to my code but to my surprise it turns out that after implementing this to DELPHI, I get an error due to division by zero. I am 98% sure that my knot vector is correctly calculated, which in a way means there shouldn't be any divisions by zero. I am 70% sure that the recursive formula is correctly implemented, for that reason I am posting my code here: program project1; uses SysUtils; Type TRealPoint = record x: single; y: single; end; type TSample = Class(TObject) public KnotVector: array of single; FitPoints: array of TRealPoint; Degree: integer; constructor Create; overload; function Coefficient(i, p: integer; Knot: single): single; procedure GetKnots; destructor Destroy; overload; end; constructor TSample.Create; begin inherited; end; function TSample.Coefficient(i, p: integer; Knot: single): single; var s1, s2: single; begin If (p = 0) then begin If (KnotVector[i] <= Knot) And (Knot < KnotVector[i+1]) then Result := 1.0 else Result := 0.0; end else begin s1 := (Knot - KnotVector[i])*Coefficient(i, p-1, Knot)/(KnotVector[i+p] - KnotVector[i]); //THIS LINE ERRORS due to division by zero ??? s2 := (KnotVector[i+p+1]-Knot)*Coefficient(i+1,p-1,Knot)/(KnotVector[i+p+1]-KnotVector[i+1]); Result := s1 + s2; end; end; procedure TSample.GetKnots(); var KnotValue: single; i, MaxKnot: integer; begin // KNOTS KnotValue:= 0.0; SetLength(KnotVector, Length(FitPoints) + 1 + Degree); MaxKnot:= Length(KnotVector) - (2*Degree + 1); for i := Low(KnotVector) to High(KnotVector) do begin if i <= (Degree) then KnotVector[i] := KnotValue / MaxKnot else if i > Length(FitPoints) then KnotVector[i] := KnotValue / MaxKnot else begin KnotValue := KnotValue + 1.0; KnotVector[i] := KnotValue / MaxKnot; end; end; end; destructor TSample.Destroy; begin inherited; end; var i, j: integer; Test: TSample; N: array of array of single; begin Test := TSample.Create; //define degree Test.Degree := 3; //random fit points j := 15; SetLength(Test.FitPoints, j + 1 + Test.Degree); For i := Low(Test.FitPoints) to High(Test.FitPoints) do begin Test.FitPoints[i].x := Random()*2000; Test.FitPoints[i].y := Random()*2000; end; //get knot vector Test.GetKnots; //get coefficients SetLength(N, j+1, j+1); For j := Low(N) to High(N) do begin For i := Low(N[j]) to High(N[j]) do begin N[j, i] := Test.Coefficient(i,3,Test.KnotVector[j]); write(floattostrf(N[j,i], ffFixed, 2, 2) + ', '); end; writeln(); end; readln(); Test.Free; end. Basically I'm not sure how to continue. I would need the values of matrix N (see this link) of basis coefficients but somehow using the formula from this link leads me to division by zero. So... Is there a totally different way how to calculate those coefficients or what is the problem here? UPDATE Instead of using my own idea i tried to implement the algorithm from here as suggested by Dsm in the comments. As a result, there is no more divison by zero, but the result is totally unexpected anyways. For n + 1 = 10 random fit points with spline degree 3 the basis matrix N (see link) is singular - as seen from the attached image. Instead of that I would expect the matrix to be band matrix. Anyway, here is my updated code: program project1; uses SysUtils; Type TRealPoint = record x: single; y: single; end; type TMatrix = array of array of double; type TSample = Class(TObject) public KnotVector: array of double; FitPoints: array of TRealPoint; SplineDegree: integer; Temp: array of double; A: TMatrix; procedure GetKnots; function GetBasis(Parameter: double): boolean; procedure FormBasisMatrix; end; procedure TSample.GetKnots(); var i, j: integer; begin // KNOTS //https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html SetLength(KnotVector, Length(FitPoints) + SplineDegree + 1); for i := Low(KnotVector) to High(KnotVector) do begin if i <= SplineDegree then KnotVector[i] := 0 else if i <= (High(KnotVector) - SplineDegree - 1) then KnotVector[i] := (i - SplineDegree) / (Length(FitPoints) - SplineDegree) else KnotVector[i] := 1; end; end; function TSample.GetBasis(Parameter: double): boolean; var m, d, k: integer; FirstTerm, SecondTerm: double; begin //http://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-curve-coef.html Result := False; //initialize to 0 SetLength(Temp, Length(FitPoints)); For m := Low(Temp) to High(Temp) do Temp[m] := 0.0; //special cases If Abs(Parameter - KnotVector[0]) < 1e-8 then begin Temp[0] := 1; end else if Abs(Parameter - KnotVector[High(KnotVector)]) < 1e-8 then begin Temp[High(Temp)] := 1; end else begin //find knot span [u_k, u_{k+1}) for k := Low(KnotVector) to High(KnotVector) do if Abs(KnotVector[k] - Parameter) < 1e-8 then break; Temp[k] := 1.0; for d := 1 to SplineDegree do begin Temp[k - d] := (KnotVector[k + 1] - Parameter) * Temp[k - d + 1] / (KnotVector[k + 1] - KnotVector[k - d + 1]); for m := k - d + 1 to k - 1 do begin FirstTerm := (Parameter - KnotVector[m]) / (KnotVector[m + d] - KnotVector[m]); SecondTerm := (KnotVector[m + d + 1] - Parameter) / (KnotVector[m + d + 1] - KnotVector[m + 1]); Temp[m] := FirstTerm * Temp[m] + SecondTerm * Temp[m + 1]; end; Temp[k] := (Parameter - KnotVector[k]) * Temp[k] / (KnotVector[k + d] - KnotVector[k]); end; end; Result := True; end; procedure TSample.FormBasisMatrix; var i, j: integer; begin SetLength(A, Length(FitPoints), Length(FitPoints)); for j := Low(A) to High(A) do begin for i := low(A[j]) to High(A[j]) do //j - row, i - column begin If GetBasis(KnotVector[j + SplineDegree]) then A[j, i] := Temp[i]; end; end; end; var i, j, iFitPoints: integer; Test: TSample; N: array of array of single; begin Test := TSample.Create; //define degree Test.SplineDegree := 3; //random fit points iFitPoints := 10; SetLength(Test.FitPoints, iFitPoints); For i := Low(Test.FitPoints) to High(Test.FitPoints) do begin Test.FitPoints[i].x := Random()*200; Test.FitPoints[i].y := Random()*200; end; //get knot vector Test.GetKnots; //get B-Spline basis matrix Test.FormBasisMatrix; // print matrix for j := Low(Test.A) to High(Test.A) do begin for i := Low(Test.A) to High(Test.A) do write(FloatToStrF(Test.A[j, i], ffFixed, 2, 2) + ', '); writeln(); end; readln(); Test.Free; end.
This does not appear to be the complete answer, but it may help you on your way, and the result is closer to what you expect, but as I say, not completely there. First of all the knots do not look right to me. The knots appear to form a 'ramp' function (clamped line), and though I can't work out if 'm' has any specific value, I would expect the function to be continuous, which yours is not. Making it continuous gives better results, e.g. procedure TSample.GetKnots(); var i, j: integer; iL : integer; begin // KNOTS //https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/INT-APP/PARA-knot-generation.html iL := Length( FitPoints ); SetLength(KnotVector, iL + SplineDegree + 1); // set outer knot values and sum used to geterate first internal value for i := 0 to SplineDegree - 1 do begin KnotVector[ i ] := 0; KnotVector[ High(KnotVector)-i] := 1; end; // and internal ones for i := 0 to High(KnotVector) - 2* SplineDegree + 1 do begin KnotVector[ SplineDegree + i - 1] := i / (iL - 1); end; end; I introduced iL = Length( Fitpoints ) for convenience - it is not important. The second issue I spotted is more of a programming one. In the GetBasis routine, you evaluate k by breaking a for loop. The problem with that is that k is not guaranteed to persist outside the loop, so your use of it later is not guaranteed to succeed (although it may) Finally, in the same place, your range determination is completely wrong in my opinion. You should be looking for parameter to lie in a half open line segment, but instead you are looking for it to lie close to an endpoint of that line. Putting these two together for k := Low(KnotVector) to High(KnotVector) do if Abs(KnotVector[k] - Parameter) < 1e-8 then break; should be replaced by k1 := 0; for k1 := High(KnotVector) downto Low(KnotVector) do begin if Parameter >= KnotVector[k1] then begin k := k1; break; end; end; where k1 is an integer. I can't help feeling that there is a plus 1 error somewhere, but I can't spot it. Anyway, I hope that this helps you get a bit further.
To build recursive pyramid for coefficient calculation at intervals, you have to start top level of recursion (inner loop of calculations) from the first real (not duplicate) knot index: For i := Test.Degree... Also check the last loop index. P.S. You can remove constructor and destructor from class description and implementation if they have nothing but inherited.
Byte array to Signed integer in Delphi
source array(4 bytes) [$80,$80,$80,$80] =integer 0 [$80,$80,$80,$81] = 1 [$80,$80,$80,$FF] = 127 [$80,$80,$81,$01] = 128 need to convert this to integer. below is my code and its working at the moment. function convert(b: array of Byte): Integer; var i, st, p: Integer; Negative: Boolean; begin result := 0; st := -1; for i := 0 to High(b) do begin if b[i] = $80 then Continue // skip leading 80 else begin st := i; Negative := b[i] < $80; b[i] := abs(b[i] - $80); Break; end; end; if st = -1 then exit; for i := st to High(b) do begin p := round(Power(254, High(b) - i)); result := result + b[i] * p; result := result - (p div 2); end; if Negative then result := -1 * result end; i'm looking for a better function? Update: file link https://drive.google.com/file/d/0ByBA4QF-YOggZUdzcXpmOS1aam8/view?usp=sharing in uploaded file ID field offset is from 5 to 9 NEW: Now i got into new problem which is decoding date field Date field hex [$80,$8F,$21,$C1] -> possible date 1995-12-15 * in uploaded file date field offset is from 199 to 203
Just an example of some improvements as outlined by David. The array is passed by reference as a const. The array is fixed in size. The use of floating point calculations are converted directly into a constant array. Const MaxRange = 3; Type TMySpecial = array[0..MaxRange] of Byte; function Convert(const b: TMySpecial): Integer; var i, j: Integer; Negative: Boolean; Const // Pwr[i] = Round(Power(254,MaxRange-i)); Pwr: array[0..MaxRange] of Cardinal = (16387064,64516,254,1); begin for i := 0 to MaxRange do begin if (b[i] <> $80) then begin Negative := b[i] < $80; Result := Abs(b[i] - $80)*Pwr[i] - (Pwr[i] shr 1); for j := i+1 to MaxRange do Result := Result + b[j]*Pwr[j] - (Pwr[j] shr 1); if Negative then Result := -Result; Exit; end; end; Result := 0; end; Note that less code lines is not always a sign of good performance. Always measure performance before optimizing the code in order to find real bottlenecks. Often code readability is better than optimizing over the top. And for future references, please tell us what the algorithm is supposed to do. Code for testing: const X : array[0..3] of TMySpecial = (($80,$80,$80,$80), // =integer 0 ($80,$80,$80,$81), // = 1 ($80,$80,$80,$FF), // = 127 ($80,$80,$81,$01)); // = 128 var i,j: Integer; sw: TStopWatch; begin sw := TStopWatch.StartNew; for i := 1 to 100000000 do for j := 0 to 3 do Convert(X[j]); WriteLn(sw.ElapsedMilliseconds); ReadLn; end.
Delphi - Sorting real numbers in high, low, high, low order
Say I have the data 1,2,3,4,5,6 I want to sort this data so that it outputs 6 1 5 2 4 3 This way, numbers are matched so that low numbers pair with high numbers Would i use a merge sort to sort it in numerical order, then split the list and match them according to this conditions? I'm trying to sort real number data in a string grid which is read from a data file; I have a working program that sorts these data in numerical order but I'm not sure how to code it so that it sorts in terms of high,low,high,low This is the code for my grid sorting procedure TForm1.SortGrid(Grid: TStringGrid; const SortCol: Integer; //sorting the string grid const datatype: Integer; const ascending: boolean); var i: Integer; tempgrid: TStringGrid; list: array of Integer; begin tempgrid := TStringGrid.create(self); with tempgrid do begin rowcount := Grid.rowcount; ColCount := Grid.ColCount; fixedrows := Grid.fixedrows; end; with Grid do begin setlength(list, rowcount - fixedrows); for i := fixedrows to rowcount - 1 do begin list[i - fixedrows] := i; tempgrid.rows[i].assign(Grid.rows[i]); end; Mergesort(Grid, list, SortCol + 1, datatype, ascending); for i := 0 to rowcount - fixedrows - 1 do begin rows[i + fixedrows].assign(tempgrid.rows[list[i]]) end; row := fixedrows; end; tempgrid.free; setlength(list, 0); end;
First, sort the numbers in descending order by using any algorithm you want (I used bubble sort in example) Then, if you have n elements in array: set a counter going from 1 to (n div 2) take last element and store it in temporary variable (tmp) shift all elements by one place to the right, starting from (counter - 1) * 2 + 1. This would overwrite last element, but you have it stored in tmp var set array[(counter - 1) * 2 + 1] element to tmp end counter This way you would effectively take last element from array and insert it at 1, 3, 5... position, until you insert last half of array elements. Sample code: procedure Sort(var AArray: array of Double); var C1, C2: Integer; tmp : Double; pivot : Integer; begin for C1 := Low(AArray) to High(AArray) - 1 do for C2 := C1 + 1 to High(AArray) do if AArray[C1] < AArray[C2] then begin tmp := AArray[C1]; AArray[C1] := AArray[C2]; AArray[C2] := tmp; end; pivot := Length(AArray) div 2; for C1 := 1 to pivot do begin tmp := AArray[High(AArray)]; for C2 := High(AArray) downto (C1 - 1) * 2 + 1 do AArray[C2] := AArray[C2 - 1]; AArray[(C1 - 1) * 2 + 1] := tmp; end; end;
From sample data you provided above, I am assuming that the input array is presorted. [Note that I don't have a compiler at hand, so you'll have to run it and see that it works --minor fiddling might be needed.] procedure SerratedSort(var AArray: array of Double); var Length1: Integer; Index1: Integer; Temp1: Double; begin Length1 := Length(AArray); Index1 := 0; while Index1 < Length1 do begin Temp1 := AArray[Length1 - 1]; System.Move(AArray[Index1], AArray[Index1 + 1], (Length1 - Index1 + 1) * SizeOf(Double)); AArray[Index1] := Temp1; Index1 := Index1 + 2; end; end; Here is how it (should) work(s) step-by-step Input AArray: 123456 Index1: 0 Temp1 := 6 System.Move: 112345 AArray: 612345 Index1: 2 Temp1 := 5 System.Move: 612234 AArray: 615234 Index1: 4 Temp1 := 4 System.Move: 615233 AArray: 615243 Output AArray: 615243 For a record structure, such as, TPerson, it would be like this: procedure SerratedSort(var A: array of TPerson); var s: Integer; i: Integer; t: TPerson; begin s := Length(A); i := 0; while i < s do begin t := A[s - 1]; System.Move(A[i], A[i + 1], (s - i + 1) * SizeOf(TPerson)); A[i] := t; i := i + 2; end; end;
Sort the data in ascending order. Then pick out the values using the following indices: 0, n-1, 1, n-2, .... In pseudo code the algorithm looks like this: Sort; lo := 0; hi := n-1; while lo<=hi do begin yield lo; inc(lo); if lo>hi then break; yield hi; dec(hi); end;
Example program demonstrating the already above given solutions: program Project1; {$APPTYPE CONSOLE} const Count = 12; type TValues = array[0..Count - 1] of Double; const Input: TValues = (1,2,4,9,13,14,15,23,60,100,101,102); var I: Integer; Output: TValues; procedure ShowValues(Caption: String; Values: TValues); var I: Integer; begin Write(Caption); for I := 0 to Count - 2 do Write(Round(Values[I]), ', '); WriteLn(Round(Values[Count - 1])); end; begin if Odd(Count) then WriteLn('Cannot compute an odd number of input values') else begin WriteLn('Program assumes sorted input!'); ShowValues('Input: ', Input); for I := 0 to (Count div 2) - 1 do begin Output[2 * I] := Input[I]; Output[2 * I + 1] := Input[Count - 1 - I]; end; ShowValues('Output: ', Output); end; ReadLn; end.
Longest arithmetic and geometric progression sequence error
I need input sequence of Integer number and find the longest arithmetic and geometric progression sequence. I had wrote this code( I must use Delphi 7) program arithmeticAndGeometricProgression; { 203. In specifeied sequence of integer numbers find the longest sequence, which is arithmetic or geometric progression. } {$APPTYPE CONSOLE} uses SysUtils; var sequence, longArithmSequ, longGeomSequ: Array of Integer; curArithmSequ, curGeomSequ: Array of Integer; // Current progress q, q1: Double; d1, d: Double; i, k: Integer; begin i := 0; d := 0; k := 0; d1 := 0; Repeat SetLength(sequence, i + 1); // Make room for another item in the array try read(sequence[i]); except // If the input character is not an integer interrupt cycle Break; end; inc(i); Until False; k := 0; curArithmSequ := NIL; curGeomSequ := NIL; longArithmSequ := NIL; longGeomSequ := NIL; d1 := sequence[1] - sequence[0]; q1 := sequence[1] / sequence[0]; i := 1; repeat d := d1; q := q1; d1 := sequence[i] - sequence[i - 1]; q1 := sequence[i] / sequence[i - 1]; if d = d1 then begin SetLength(curArithmSequ, Length(curArithmSequ) + 1); curArithmSequ[Length(curArithmSequ) - 1] := sequence[i]; end; if q = q1 then begin SetLength(curGeomSequ, Length(curGeomSequ) + 1); curGeomSequ[Length(curGeomSequ) - 1] := sequence[i]; end; if Length(curArithmSequ) > Length(longArithmSequ) then begin longArithmSequ := NIL; SetLength(longArithmSequ, Length(curArithmSequ)); for k := 0 to Length(curArithmSequ) - 1 do longArithmSequ[k] := curArithmSequ[k]; end; if Length(curGeomSequ) > Length(longGeomSequ) then begin longGeomSequ := NIL; SetLength(longGeomSequ, Length(curGeomSequ)); for k := 0 to Length(curGeomSequ) - 1 do longGeomSequ[k] := curGeomSequ[k]; end; if d <> d1 then curArithmSequ := NIL; if q <> q1 then curGeomSequ := NIL; inc(i); Until i >= Length(sequence) - 1; writeLn('The Longest Arithmetic Progression'); for k := 0 to Length(longArithmSequ) - 1 do Write(longArithmSequ[k], ' '); writeLn('The Longest Geometric Progression'); for k := 0 to Length(longGeomSequ) - 1 do Write(longGeomSequ[k], ' '); Readln(k); end. I have such question: Why it can't print first 1-2 members of arithmetic progression Why it always print '2' as geometric progression Is there monkey-style code in my programm? Please mention to me where are my mistakes.
Updated: You need to change the logic inside the repeat loop in this way: if d = d1 then begin if (Length(curArithmSequ) = 0) then begin if (i > 1) then SetLength(curArithmSequ,3) else SetLength(curArithmSequ,2); end else SetLength(curArithmSequ,Length(curArithmSequ)+1); for k := 0 to Length(curArithmSequ) - 1 do curArithmSequ[k] := sequence[i - (Length(curArithmSequ) - k - 1)]; end else SetLength(curArithmSequ,0); if q = q1 then begin if (Length(curGeomSequ) = 0) then begin if (i > 1) then SetLength(curGeomSequ,3) else SetLength(curGeomSequ,2); end else SetLength(curGeomSequ,Length(curGeomSequ)+1); for k := 0 to Length(curGeomSequ) - 1 do curGeomSequ[k] := sequence[i - (Length(curGeomSequ) - k - 1)]; end else SetLength(curGeomSequ,0); An input sequence of: 2,6,18,54 gives LAP=2,6 and LGP=2,6,18,54 while an input sequence of: 1,3,5,7,9 gives: LAP=1,3,5,7,9 and LGP=1,3 And a sequence of 5,4,78,2,3,4,5,6,18,54,16 gives LAP=2,3,4,5,6 and LGP=6,18,54 Here is my complete test (see comments below): program arithmeticAndGeometricProgression; { 203. In specified sequence of integer numbers find the longest sequence, which is arithmetic or geometric progression. } {$APPTYPE CONSOLE} uses SysUtils; Type TIntArr = array of integer; TValidationProc = function( const sequence : array of integer) : Boolean; function IsValidArithmeticSequence( const sequence : array of integer) : Boolean; begin Result := (Length(sequence) = 2) // Always true for a sequence of 2 values or // An arithmetic sequence is defined by: a,a+n,a+2*n, ... // This gives: a+n - a = a+2*n - (a+n) // s[1] - s[0] = s[2] - s[1] <=> 2*s[1] = s[2] + s[0] (2*sequence[1] = (Sequence[2] + sequence[0])); end; function IsValidGeometricSequence( const sequence : array of integer) : Boolean; var i,zeroCnt : Integer; begin // If a zero exists in a sequence all members must be zero zeroCnt := 0; for i := 0 to High(sequence) do if (sequence[i] = 0) then Inc(zeroCnt); if (Length(sequence) = 2) then Result := (zeroCnt in [0,2]) else // A geometric sequence is defined by: a*r^0,a*r^1,a*r^2 + ... ; r <> 0 // By comparing sequence[i]*sequence[i-2] with Sqr(sequence[i-1]) // i.e. a*(a*r^2) with Sqr(a*r) we can establish a valid geometric sequence Result := (zeroCnt in [0,3]) and (Sqr(sequence[1]) = sequence[0]*Sequence[2]); end; procedure AddSequence( var arr : TIntArr; sequence : array of Integer); var i,len : Integer; begin len := Length(arr); SetLength(arr,len + Length(sequence)); for i := 0 to High(sequence) do arr[len+i] := sequence[i]; end; function GetLongestSequence( IsValidSequence : TValidationProc; const inputArr : array of integer) : TIntArr; var i : Integer; currentSequence : TIntArr; begin SetLength(Result,0); SetLength(currentSequence,0); if (Length(inputArr) <= 1) then Exit; for i := 1 to Length(inputArr)-1 do begin if (Length(Result) = 0) then // no valid sequence found so far begin if IsValidSequence([inputArr[i-1],inputArr[i]]) then AddSequence(currentSequence,[inputArr[i-1],inputArr[i]]); end else begin if IsValidSequence([inputArr[i-2],inputArr[i-1],inputArr[i]]) then begin if (Length(currentSequence) = 0) then AddSequence(currentSequence,[inputArr[i-2],inputArr[i-1],inputArr[i]]) else AddSequence(currentSequence,inputArr[i]); end else // Reset currentSequence SetLength(currentSequence,0); end; // Longer sequence ? if (Length(currentSequence) > Length(Result)) then begin SetLength(Result,0); AddSequence(Result,currentSequence); end; end; end; procedure OutputSequence( const arr : TIntArr); var i : Integer; begin for i := 0 to High(arr) do begin if i <> High(arr) then Write(arr[i],',') else WriteLn(arr[i]); end; end; begin WriteLn('Longest Arithmetic Sequence:'); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[0,1,2,3,4,5,6])); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[1,0,1,2,3,4,5,6])); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[0,0,0,0,0,0])); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[0,0,1,2,4,8,16])); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[0,0,6,9,12,4,8,16])); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[9,12,16])); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[1,0,1,-1,-3])); OutputSequence(GetLongestSequence(IsValidArithmeticSequence,[5,4,78,2,3,4,5,6,18,54,16])); WriteLn('Longest Geometric Sequence:'); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[0,1,2,3,4,5,6])); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[1,0,1,2,3,4,5,6])); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[0,0,0,0,0,0])); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[0,0,1,2,4,8,16])); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[0,0,6,9,12,4,8,16])); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[9,12,16])); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[1,0,9,-12,16])); OutputSequence(GetLongestSequence(IsValidGeometricSequence,[5,4,78,2,3,4,5,6,18,54,16])); ReadLn; end. As commented by David, mixing floating point calculations with integers can cause unwanted behavior. Eg. input sequence 9,12,16 with a geometric factor of 4/3 will work here, but other similar non-integer geometric factors may fail. More extensive testing is required to verify this. In order to remove the dependency of floating point operations, following change in the loop can be made: // A geometric function is defined by a + n*a + n^2*a + ... // By comparing sequence[i]*sequence[i-2] with Sqr(sequence[i-1]) // i.e. n^2*a*a with Sqr(n*a) we can establish a valid geometric sequence q := Sqr(sequence[i-1]); if (i < 2) then q1 := q // Special case, always true else q1 := sequence[i] * sequence[i - 2]; Change the declarations of d,d1,q,q1 to Integer and remove the assignment of q1 before the loop. The test code is updated to reflect these changes. There is a problem when a sequence has one or more zeroes for the geometric sequence calculations. Zero is only considered a member of a geometric sequence if all values are zero. Geometric sequence: a*r^0, a*r^1, a*r^2, etc; r <> 0. With a = 0 the progression consists of zeroes only. This also implies that a valid geometric sequence can not hold both non-zero and zero values. To rectify this with current structure it became messy. So I updated my test above with a better structured program that handles all input sequences.
This is quite an interesting problem. LU RD has given you an answer that fixes your code. I offer as an alternative, the way I would address the problem: program LongestSubsequence; {$APPTYPE CONSOLE} type TSubsequence = record Start: Integer; Length: Integer; end; function Subsequence(Start, Length: Integer): TSubsequence; begin Result.Start := Start; Result.Length := Length; end; type TTestSubsequenceRule = function(a, b, c: Integer): Boolean; function FindLongestSubsequence( const seq: array of Integer; const TestSubsequenceRule: TTestSubsequenceRule ): TSubsequence; var StartIndex, Index: Integer; CurrentSubsequence, LongestSubsequence: TSubsequence; begin LongestSubsequence := Subsequence(-1, 0); for StartIndex := low(seq) to high(seq) do begin CurrentSubsequence := Subsequence(StartIndex, 0); for Index := CurrentSubsequence.Start to high(seq) do begin if (CurrentSubsequence.Length<2) or TestSubsequenceRule(seq[Index-2], seq[Index-1], seq[Index]) then begin inc(CurrentSubsequence.Length); if CurrentSubsequence.Length>LongestSubsequence.Length then LongestSubsequence := CurrentSubsequence; end else break; end; end; Result := LongestSubsequence; end; function TestArithmeticSubsequence(a, b, c: Integer): Boolean; begin Result := (b-a)=(c-b); end; function FindLongestArithmeticSubsequence(const seq: array of Integer): TSubsequence; begin Result := FindLongestSubsequence(seq, TestArithmeticSubsequence); end; function TestGeometricSubsequence(a, b, c: Integer): Boolean; begin Result := (b*b)=(a*c); end; function FindLongestGeometricSubsequence(const seq: array of Integer): TSubsequence; begin Result := FindLongestSubsequence(seq, TestGeometricSubsequence); end; procedure OutputSubsequence(const seq: array of Integer; const Subsequence: TSubsequence); var Index: Integer; begin for Index := 0 to Subsequence.Length-1 do begin Write(seq[Subsequence.Start + Index]); if Index<Subsequence.Length-1 then Write(','); end; Writeln; end; procedure OutputLongestArithmeticSubsequence(const seq: array of Integer); begin OutputSubsequence(seq, FindLongestArithmeticSubsequence(seq)); end; procedure OutputLongestGeometricSubsequence(const seq: array of Integer); begin OutputSubsequence(seq, FindLongestGeometricSubsequence(seq)); end; begin Writeln('Testing arithmetic sequences:'); OutputLongestArithmeticSubsequence([]); OutputLongestArithmeticSubsequence([1]); OutputLongestArithmeticSubsequence([1,2]); OutputLongestArithmeticSubsequence([1,2,3]); OutputLongestArithmeticSubsequence([1,2,4]); OutputLongestArithmeticSubsequence([6,1,2,4,7]); OutputLongestArithmeticSubsequence([6,1,2,4,6,7]); Writeln('Testing geometric sequences:'); OutputLongestGeometricSubsequence([]); OutputLongestGeometricSubsequence([1]); OutputLongestGeometricSubsequence([1,2]); OutputLongestGeometricSubsequence([1,2,4]); OutputLongestGeometricSubsequence([7,1,2,4,-12]); OutputLongestGeometricSubsequence([-16,-12,-9]); OutputLongestGeometricSubsequence([4,-16,-12,-9]); Readln; end. The key point to stress is that your code is hard to understand because all the different aspects are mixed in with each other. I have attempted here to break the algorithm down into smaller parts which can be understood in isolation.