Aggregating labels in GradientBoostingRegression - machine-learning

I am trying to understand Scikit-Learn's Gradient Boosting Regression algorithm. I followed their source code and have a good understanding of their iterative construction of trees based on a chosen loss function. What I couldn't figure out an answer to is how do they take the average of the labels from all underlying estimators when I invoke predict() .
I followed that function call down to this line. Here, scale holds the learning_rate , which if not provided, will default to 0.1. So, if I were to use 500 trees, I don't understand why would they be multiplying each of 500 different labels, for a given sample, by 0.1.
If someone could direct me to a published paper that explains this in depth, it would be much appreciated.

Related

Sklearn models: decision function vs predict_proba for roc curve

In Sklearn, roc curve requires (y_true, y_scores). Generally, for y_scores, I feed in probabilities as outputted by a classifier's predict_proba function. But in the sklearn example, I see both predict_prob and decision_fucnction are used.
I wonder what is the difference in terms of real life model evaluation?
The functional form of logistic regression is -
f(x)=11+e−(β0+β1x1+⋯+βkxk)
This is what is returned by predict_proba.
The term inside the exponential i.e.
d(x)=β0+β1x1+⋯+βkxk
is what is returned by decision_function. The "hyperplane" referred to in the documentation is
β0+β1x1+⋯+βkxk=0
My Understanding after reading few resources:
Decision Function: Gives the distances from the hyperplane. These are therefore unbounded. This can not be equated to probabilities. For getting probabilities, there are 2 solutions - Platt Scaling & Multi-Attribute Spaces to calibrate outputs using Extreme Value Theory.
Predict Proba: Gives the actual probabilities (0 to 1) however attribute 'probability' has to be set to True while fitting the model itself. It uses Platt scaling which is known to have theoretical issues.
Refer to this in documentation.

How do sample weights work in classification models?

What does it mean to provide weights to each sample for
classification? How does a classification algorithm like Logistic regression or SVMs use weights to emphasize certain examples more than others? I would love going into details to unpack how these algorithms leverage sample weights.
If you look at the sklearn documentation for logistic regression, you can see that the fit function has an optional sample_weight parameter which is defined as an array of weights assigned to individual samples.
this option is meant for imbalance dataset. Let's take an example: i've got a lot of datas and some are just noise. But other are really important to me and i'd like my algorithm to consider them a lot more than the other points. So i assigne a weight to it in order to make sure that it will be dealt with properly.
It change the way the loss is calculate. The error (residues) will be multiplie by the weight of the point and thus, the minimum of the objective function will be shifted. I hope it's clear enough. i don't know if you're familiar with the math behind it so i provide here a small introduction to have everything under hand (apologize if this was not needed)
https://perso.telecom-paristech.fr/rgower/pdf/M2_statistique_optimisation/Intro-ML-expanded.pdf
See a good explanation here: https://www.kdnuggets.com/2019/11/machine-learning-what-why-how-weighting.html .

Machine Learning, After training, how exactly does it get a prediction? opencv

So after you have a machine learning algorithm trained, with your layers, nodes, and weights, how exactly does it go about getting a prediction for an input vector? I am using MultiLayer Perceptron (neural networks).
From what I currently understand, you start with your input vector to be predicted. Then you send it to your hidden layer(s) where it adds your bias term to each data point, then adds the sum of the product of each data point and the weight for each node (found in training), then runs that through the same activation function used in training. Repeat for each hidden layer, then does the same for your output layer. Then each node in the output layer is your prediction(s).
Is this correct?
I got confused when using opencv to do this, because in the guide it says when you use the function predict:
If you are using the default cvANN_MLP::SIGMOID_SYM activation
function with the default parameter values fparam1=0 and fparam2=0
then the function used is y = 1.7159*tanh(2/3 * x), so the output
will range from [-1.7159, 1.7159], instead of [0,1].
However, when training it is also stated in the documentation that SIGMOID_SYM uses the activation function:
f(x)= beta*(1-e^{-alpha x})/(1+e^{-alpha x} )
Where alpha and beta are user defined variables.
So, I'm not quite sure what this means. Where does the tanh function come into play? Can anyone clear this up please? Thanks for the time!
The documentation where this is found is here:
reference to the tanh is under function descriptions predict.
reference to activation function is by the S looking graph in the top part of the page.
Since this is a general question, and not code specific, I did not post any code with it.
I would suggest that you read about appropriate algorithm that your are using or plan to use. To be honest there is no one definite algorithm to solve a problem but you can explore what features you got and what you need.
Regarding how an algorithm performs prediction is totally depended on the choice of algorithm. Support Vector Machine (SVM) performs prediction by fitting hyperplanes on the feature space and using some metric such as distance for learning and than the learnt model is used for prediction. KNN on the other than uses simple nearest neighbor measurement for prediction.
Please do more work on what exactly you need and read through the research papers to get proper understanding. There is not magic involved in prediction but rather mathematical formulations.

Weight parameter in GMM and Expectation Maximization

I am working in programming of GMM with EM. I am stuck with the following problem. As you will see in this website, there is a parameter "pi" which is in other words the weight or probability value.
My question is how is this calculated? Or is it in real coding is it ignored?
pi_k is the mixture coefficient for the k-th Gaussian. You definitely can't ignore it. The maximum likelihood estimator for pi_k is the mean of the k-th indicator variables for your instances. The page you referenced calls these indicators \alpha_ik.
As you may have read, each iteration of EM has two steps. an expectation step and a maximization step. At each expectation step, we have an increasingly refined idea of how much does each training sample belong to each cluster. Using this estimate, in the maximization step, we calculate the parameters of the GMM which maximizes the likelihood. pi_k is one of the thusly calculated parameters in the maximization step. So pi_k is re-evaluated at every iteration.
Using the opencv implementation of EM, if 'em_model' is your EM-model, and if it has been trained,
Mat weights = em_model.get<Mat>("weights");
will give you the values of pi_k.

Estimating parameters in multivariate classification

Newbie here typesetting my question, so excuse me if this don't work.
I am trying to give a bayesian classifier for a multivariate classification problem where input is assumed to have multivariate normal distribution. I choose to use a discriminant function defined as log(likelihood * prior).
However, from the distribution,
$${f(x \mid\mu,\Sigma) = (2\pi)^{-Nd/2}\det(\Sigma)^{-N/2}exp[(-1/2)(x-\mu)'\Sigma^{-1}(x-\mu)]}$$
i encounter a term -log(det($S_i$)), where $S_i$ is my sample covariance matrix for a specific class i. Since my input actually represents a square image data, my $S_i$ discovers quite some correlation and resulting in det(S_i) being zero. Then my discriminant function all turn Inf, which is disastrous for me.
I know there must be a lot of things go wrong here, anyone willling to help me out?
UPDATE: Anyone can help how to get the formula working?
I do not analyze the concept, as it is not very clear to me what you are trying to accomplish here, and do not know the dataset, but regarding the problem with the covariance matrix:
The most obvious solution for data, where you need a covariance matrix and its determinant, and from numerical reasons it is not feasible is to use some kind of dimensionality reduction technique in order to capture the most informative dimensions and simply discard the rest. One such method is Principal Component Analysis (PCA), which applied to your data and truncated after for example 5-20 dimensions would yield the reduced covariance matrix with non-zero determinant.
PS. It may be a good idea to post this question on Cross Validated
Probably you do not have enough data to infer parameters in a space of dimension d. Typically, the way you would get around this is to take an MAP estimate as opposed to an ML.
For the multivariate normal, this is a normal-inverse-wishart distribution. The MAP estimate adds the matrix parameter of inverse Wishart distribution to the ML covariance matrix estimate and, if chosen correctly, will get rid of the singularity problem.
If you are actually trying to create a classifier for normally distributed data, and not just doing an experiment, then a better way to do this would be with a discriminative method. The decision boundary for a multivariate normal is quadratic, so just use a quadratic kernel in conjunction with an SVM.

Resources