How to resolve this error in agda? - agda

I have defined Stream of positive rational like this.
one : ℤ
one = + 1
--giving a rational as input it will return next rational (in some down tailing method)
next : pair → pair
next q = if (n eq one) then (mkPair (+ m Data.Integer.+ one) 1)
else (mkPair (n Data.Integer.- one) (m Nat.+ 1))
where
n = getX q
m = getY q
--it will generate all rational from (1,1)
rational : Stream pair
rational = iterate next (mkPair one 1)
--it will get all the rational which are greater than the given rational.
RQ : pair → Stream pair → Stream pair
RQ q (x ∷ xs) = (x add q) ∷ ♯ (RQ q (♭ xs))
--This is a stream of positive rational greater than (0,1).
positiveRat : Stream pair
positiveRat = RQ (mkPair (+ 0) (1)) rational
here pair is a record with two field Z and N.
Now i want to prove that `for all x if x > 0 then x will belong to Stream of positive rational.
open import Data.Stream
open import Data.Nat
open import Data.Rational
open import Data.Integer
open import Coinduction
lemma : (x : pair) → ((+ 0) Data.Integer.≤ (pair.x x)) → ( x ∈ positiveRat )
lemma q proof = ?
An attempt to split proof leads to the following error message:
I'm not sure if there should be a case for the constructor +≤+,
because I get stuck when trying to solve the following unification
problems (inferred index ≟ expected index):
+ m ≟ + 0
+ n ≟ getX q₁
when checking that the expression ? has type q ∈ positiveRat
Please help to resolve this error.

Related

Proof about a function that uses rewrite: a "vertical bars in goals" question

I have a function that uses rewrite to satisfy the Agda type checker. I thought that I had a reasonably good grasp of how to deal with the resulting "vertical bars" in proofs about such functions. And yet, I fail completely at dealing with these bars in my seemingly simple case.
Here are the imports and my function, step. The rewrites make Agda see that n is equal to n + 0 and that suc (acc + n) is equal to acc + suc n, respectively.
module Repro where
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Data.Nat
open import Data.Nat.DivMod
open import Data.Nat.DivMod.Core
open import Data.Nat.Properties
open import Agda.Builtin.Nat using () renaming (mod-helper to modₕ)
step : (acc d n : ℕ) → modₕ acc (acc + n) d n ≤ acc + n
step zero d n rewrite P.sym (+-identityʳ n) = a[modₕ]n<n n (suc d) 0
step (suc acc) d n rewrite P.sym (+-suc acc n) = a[modₕ]n<n acc (suc d) (suc n)
Now for the proof, which pattern matches on acc, just like the function. Here's the zero case:
step-ok : ∀ (acc d n : ℕ) → step acc d n ≡ a[modₕ]n<n acc d n
step-ok zero d n with n | P.sym (+-identityʳ n)
step-ok zero d n | .(n + 0) | P.refl = ?
At this point, Agda tells me I'm not sure if there should be a case for the constructor P.refl, because I get stuck when trying to solve the following unification problems (inferred index ≟ expected index): w ≟ w + 0 [...]
I am also stuck in the second case, the suc acc case, albeit in a different way:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n)
step-ok (suc acc) d n | .(acc + suc n) | P.refl = ?
Here, Agda says suc (acc + n) != w of type ℕ when checking that the type [...] of the generated with function is well-formed
Update after Sassa NF's response
I followed Sassa NF's advice and reformulated my function with P.subst instead of rewrite. I.e., I changed my right-hand side from being about n + 0 to being about n, instead of conversely changing the goal from being about n to being about n + 0:
step′ : (acc d n : ℕ) → modₕ acc (acc + n) d n ≤ acc + n
step′ zero d n = P.subst (λ # → modₕ 0 # d # ≤ #) (+-identityʳ n) (a[modₕ]n<n n (suc d) 0)
step′ (suc acc) d n = P.subst (λ # → modₕ (suc acc) # d n ≤ #) (+-suc acc n) (a[modₕ]n<n acc (suc d) (suc n))
During the proof, the P.subst in the function definition needs to be eliminated, which can be done with a with construct:
step-ok′ : ∀ (acc d n : ℕ) → step′ acc d n ≡ a[modₕ]n<n acc d n
step-ok′ zero d n with n + 0 | +-identityʳ n
... | .n | P.refl = P.refl
step-ok′ (suc acc) d n with acc + suc n | +-suc acc n
... | .(suc (acc + n)) | P.refl = P.refl
So, yay! I just finished my very first Agda proof involving a with.
Some progress on the original problem
My guess would be that my first issue is a unification issue during dependent pattern matching: there isn't any substitution that makes n identical to n + 0. More generally, in situations where one thing is a strict subterm of the other thing, I suppose that we may run into unification trouble. So, maybe using with to match n with n + 0 was asking for problems.
My second issue seems to be what the Agda language reference calls an ill-typed with-abstraction. According to the reference, this "happens when you abstract over a term that appears in the type of a subterm of the goal or argument types." The culprit seems to be the type of the goal's subterm a[modₕ]n<n (suc acc) d n, which is modₕ [...] ≤ (suc acc) + n, which contains the subterm I abstract over, (suc acc) + n.
It looks like this is usually resolved by additionally abstracting over the part of the goal that has the offending type. And, indeed, the following makes the error message go away:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n) | a[modₕ]n<n (suc acc) d n
... | .(acc + suc n) | P.refl | rhs = {!!}
So far so good. Let's now introduce P.inspect to capture the rhs substitution:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n) | a[modₕ]n<n (suc acc) d n | P.inspect (a[modₕ]n<n (suc acc) d) n
... | .(acc + suc n) | P.refl | rhs | P.[ rhs-eq ] = {!!}
Unfortunately, this leads to something like the original error: w != suc (acc + n) of type ℕ when checking that the type [...] of the generated with function is well-formed
One day later
Of course I'd run into the same ill-typed with-abstraction again! After all, the whole point of P.inspect is to preserve a[modₕ]n<n (suc acc) d n, so that it can construct the term a[modₕ]n<n (suc acc) d n ≡ rhs. However, preserved a[modₕ]n<n (suc acc) d n of course still has its preserved original type, modₕ [...] ≤ (suc acc) + n, whereas rhs has the modified type modₕ [...] ≤ acc + suc n. That's what's causing trouble now.
I guess one solution would be to use P.subst to change the type of the term we inspect. And, indeed, the following works, even though it is hilariously convoluted:
step-ok (suc acc) d n with suc (acc + n) | P.sym (+-suc acc n) | a[modₕ]n<n (suc acc) d n | P.inspect (λ n → P.subst (λ # → modₕ (suc acc) # d n ≤ #) (P.sym (+-suc acc n)) (a[modₕ]n<n (suc acc) d n)) n
... | .(acc + suc n) | P.refl | rhs | P.[ rhs-eq ] rewrite +-suc acc n = rhs-eq
So, yay again! I managed to fix my original second issue - basically by using P.subst in the proof instead of in the function definition. It seems, though, that using P.subst in the function definition as per Sassa NF's guidance is preferable, as it leads to much more concise code.
The unification issue is still a little mysterious to me, but on the positive side, I unexpectedly learned about the benefits of irrelevance on top of everything.
I'm accepting Sassa NF's response, as it put me on the right track towards a solution.
Your use of P.refl indicates some misunderstanding about the role of _≡_.
There is no magic in that type. It is just a dependent type with a single constructor. Proving that some x ≡ y resolves to P.refl does not tell Agda anything new about x and y: it only tells Agda that you managed to produce a witness of the type _≡_. This is the reason it cannot tell n and .(n + 0) are the same thing, or that suc (acc + n) is the same as .(acc + suc n). So both of the errors you see are really the same.
Now, what rewrite is for.
You cannot define C x ≡ C y for dependent type C _. C x and C y are different types. Equality is defined only for elements of the same type, so there is no way to even express the idea that an element of type C x is comparable to an element of type C y.
There is, however, an axiom of induction, which allows to produce elements of type C y, if you have an element of type C x and an element of type x ≡ y. Note there is no magic in the type _≡_ - that is, you can define your own type, and construct such a function, and Agda will be satisfied:
induction : {A : Set} {C : (x y : A) -> (x ≡ y) -> Set} (x y : A) (p : x ≡ y) ((x : A) -> C x x refl) -> C x y p
induction x .x refl f = f x
Or a simplified version that follows from the induction axiom:
transport : {A : Set} {C : A -> Set} (x y : A) (x ≡ y) (C x) -> C y
transport x .x refl cx = cx
What this means in practice, is that you get a proof for something - for example, A x ≡ A x, but then transport this proof along the equality x ≡ y to get a proof A x ≡ A y. This usually requires specifying the type explicitly, in this case {C = y -> A x ≡ A y}, and provide the x, the y and the C x. As such, it is a very cumbersome procedure, although the learners will benefit from doing these steps.
rewrite then is a syntactic mechanism that rewrites the types of the terms known before the rewrite, so that such transport is not needed after that. Because it is syntactic, it does interpret the type _≡_ in a special way (so if you define your own type, you need to tell Agda you are using a different type as equality). Rewriting types is not "telling" Agda that some types are equal. It just literally replaces occurrences of x in type signatures with y, so now you only need to construct things with y and refl.
Having said all that, you can see why it works for step. There rewrite P.sym ... literally replaced all occurrences of n with n + 0, including the return type of the function, so now it is modₕ acc (acc + (n + 0)) d (n + 0) ≤ acc + (n + 0). Then constructing a value of that type just works.
Then step-ok didn't work, because you only pattern-matched values. There is nothing to tell that n and (n + 0) are the same thing. But rewrite will. Or you could use a function like this transport.

Could not parse the left-hand side (m + 1) * n

I just started learning Agda reading Programming Language Foundations in Agda. Right in the first chapter there's a definition of multiplication with one of the cases being (suc m) * n = n + (m * n). I assumed it could be nicer expressed as (m + 1) * n = n + (m * n), but apparently this is not the case. The following program:
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
{-# BUILTIN NATURAL ℕ #-}
_*_ : ℕ → ℕ → ℕ
zero * n = zero
-- This is fine:
-- (suc m) * n = n + (m * n)
-- This is not:
(m + 1) * n = n + (m * n)
fails with:
Could not parse the left-hand side (m + 1) * n
Operators used in the grammar:
* (infix operator, level 20) [_*_ (/Users/proxi/Documents/Projekty/Agda/multiply.agda:11,1-4)]
+ (infix operator, level 20) [_+_ (/Users/proxi/Documents/Projekty/Agda/multiply.agda:5,1-4)]
when scope checking the left-hand side (m + 1) * n in the
definition of _*_
I believe in Agda terms one could say that definition using constructor works fine, but definition using operator does not. Why is that so? Is this never possible, or does it depend on how operator (function) is defined?
Using functions in patterns is not supported.
Note also that if functions were allowed in patterns, it would be (1 + m) * n rather than (m + 1) * n, because _+_ is defined by pattern matching on its first argument, so 1 + m reduces to suc m and m + 1 is stuck.
As has been pointed out, you cannot just use a function to pattern-match. However, it is possible to declare pattern-matching extensions that express nearly the same thing:
open import Data.Nat.Base as Nat
using (ℕ; zero) renaming (suc to 1+_)
pattern 2+_ n = 1+ 1+ n
Then you can use (1+ m) * n, and even (2+ m).

When will this terminate?

I actually want to prove one theorem but i think if I prove on the other side that is fine also.
I have defined a stream of positive rationals like this:
one : ℤ
one = + 1
next : pair → pair
next q = if (n eq one) then (mkPair (+ m Data.Integer.+ one) 1)
else (mkPair (n Data.Integer.- one) (m Nat.+ 1))
where
n = getX q
m = getY q
-- eq is defined correctly for equivalence of two integer.
rational : Stream pair
rational = iterate next (mkPair one 1)
RQ : pair → Stream pair → Stream pair
RQ q (x ∷ xs) = (x add q) ∷ ♯ (RQ q (♭ xs))
positiveRat : Stream pair
positiveRat = RQ (mkPair (+ 0) (1)) rational
Here pair is a record with ℤ and ℕ fields:
--records of rational number
record pair : Set where
field
x : ℤ
y : ℕ
mkPair : ℤ → ℕ → pair
mkPair a b = record { x = a; y = b}
Now I want to prove that every rational which is in positiveRat will be positive.
open import Data.Stream
open import Data.Nat
open import Data.Rational
open import Data.Integer
open import Coinduction
open import Data.Unit
lemma : (x : pair) → (x ∈ positiveRat) → (+ 0 Data.Integer.≤ pair.x x)
lemma .(record { x = + 1 ; y = 1 }) here = +≤+ z≤n
lemma .(record { x = + 2 ; y = 1 }) (there here) = +≤+ z≤n
lemma .(record { x = + 1 ; y = 2 }) (there (there here)) = {!!}
lemma q (there (there (there pf))) = {!!}
I am writing the proof by splitting on pf. But it is unstoppable.
This is very easy to solve on this mock example because stream is periodic:
lemma : (x : ℚ) → (x ∈ stream) → (+ 0 Data.Integer.≤ ℚ.numerator x)
lemma .(record { numerator = + 1}) here = +≤+ z≤n
lemma .(record { numerator = + 2}) (there here) = +≤+ z≤n
lemma .(record { numerator = + 3}) (there (there here)) = +≤+ z≤n
lemma q (there (there (there pf))) = lemma q pf
However, I imagine in your real example, stream is not periodic. There is no generic answer; the correct proof of lemma depends on how your real stream is defined, so you will have to post that.

How do I prove a "seemingly obvious" fact when relevant types are abstracted by a lambda in Idris?

I am writing a basic monadic parser in Idris, to get used to the syntax and differences from Haskell. I have the basics of that working just fine, but I am stuck on trying to create VerifiedSemigroup and VerifiedMonoid instances for the parser.
Without further ado, here's the parser type, Semigroup, and Monoid instances, and the start of a VerifiedSemigroup instance.
data ParserM a = Parser (String -> List (a, String))
parse : ParserM a -> String -> List (a, String)
parse (Parser p) = p
instance Semigroup (ParserM a) where
p <+> q = Parser (\s => parse p s ++ parse q s)
instance Monoid (ParserM a) where
neutral = Parser (const [])
instance VerifiedSemigroup (ParserM a) where
semigroupOpIsAssociative (Parser p) (Parser q) (Parser r) = ?whatGoesHere
I'm basically stuck after intros, with the following prover state:
-Parser.whatGoesHere> intros
---------- Other goals: ----------
{hole3},{hole2},{hole1},{hole0}
---------- Assumptions: ----------
a : Type
p : String -> List (a, String)
q : String -> List (a, String)
r : String -> List (a, String)
---------- Goal: ----------
{hole4} : Parser (\s => p s ++ q s ++ r s) =
Parser (\s => (p s ++ q s) ++ r s)
-Parser.whatGoesHere>
It looks like I should be able to use rewrite together with appendAssociative somehow,
but I don't know how to "get inside" the lambda \s.
Anyway, I'm stuck on the theorem-proving part of the exercise - and I can't seem to find much Idris-centric theorem proving documentation. I guess maybe I need to start looking at Agda tutorials (though Idris is the dependently-typed language I'm convinced I want to learn!).
The simple answer is that you can't. Reasoning about functions is fairly awkward in intensional type theories. For example, Martin-Löf's type theory is unable to prove:
S x + y = S (x + y)
0 + y = y
x +′ S y = S (x + y)
x +′ 0 = x
_+_ ≡ _+′_ -- ???
(as far as I know, this is an actual theorem and not just "proof by lack of imagination"; however, I couldn't find the source where I read it). This also means that there is no proof for the more general:
ext : ∀ {A : Set} {B : A → Set}
{f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g
This is called function extensionality: if you can prove that the results are equal for all arguments (that is, the functions are equal extensionally), then the functions are equal as well.
This would work perfectly for the problem you have:
<+>-assoc : {A : Set} (p q r : ParserM A) →
(p <+> q) <+> r ≡ p <+> (q <+> r)
<+>-assoc (Parser p) (Parser q) (Parser r) =
cong Parser (ext λ s → ++-assoc (p s) (q s) (r s))
where ++-assoc is your proof of associative property of _++_. I'm not sure how would it look in tactics, but it's going to be fairly similar: apply congruence for Parser and the goal should be:
(\s => p s ++ q s ++ r s) = (\s => (p s ++ q s) ++ r s)
You can then apply extensionality to get assumption s : String and a goal:
p s ++ q s ++ r s = (p s ++ q s) ++ r s
However, as I said before, we don't have function extensionality (note that this is not true for type theories in general: extensional type theories, homotopy type theory and others are able to prove this statement). The easy option is to assume it as an axiom. As with any other axiom, you risk:
Losing consistency (i.e. being able to prove falsehood; though I think function extensionality is OK)
Breaking reduction (what does a function that does case analysis only for refl do when given this axiom?)
I'm not sure how Idris handles axioms, so I won't go into details. Just beware that axioms can mess up some stuff if you are not careful.
The hard option is to work with setoids. A setoid is basically a type equipped with custom equality. The idea is that instead of having a Monoid (or VerifiedSemigroup in your case) that works on the built-in equality (= in Idris, ≡ in Agda), you have a special monoid (or semigroup) with different underlying equality. This is usually done by packing the monoid (semigroup) operations together with the equality and bunch of proofs, namely (in pseudocode):
= : A → A → Set -- equality
_*_ : A → A → A -- associative binary operation
1 : A -- neutral element
=-refl : x = x
=-trans : x = y → y = z → x = z
=-sym : x = y → y = x
*-cong : x = y → u = v → x * u = y * v -- the operation respects
-- our equality
*-assoc : x * (y * z) = (x * y) * z
1-left : 1 * x = x
1-right : x * 1 = x
The choice of equality for parsers is clear: two parsers are equal if their outputs agree for all possible inputs.
-- Parser equality
_≡p_ : {A : Set} (p q : ParserM A) → Set
Parser p ≡p Parser q = ∀ x → p x ≡ q x
This solution comes with different tradeoffs, namely that the new equality cannot fully substitute the built-in one (this tends to show up when you need to rewrite some terms). But it's great if you just want to show that your code does what it's supposed to do (up to some custom equality).

Instance Implicits for Type Checking

I am learning how "typeclasses" are implemented in Agda. As an example, I am trying to implement Roman numerals whose composition with # would type-check.
I am not clear why Agda complains there is no instance for Join (Roman _ _) (Roman _ _) _ - clearly, it couldn't work out what natural numbers to substitute there.
Is there a nicer way to introduce Roman numbers that don't have "constructor" form? I have a constructor "madeup", which probably would need to be private, to be sure I have only "trusted" ways to construct other Roman numbers through Join.
module Romans where
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
infixr 4 _+_ _*_ _#_
_+_ : ℕ → ℕ → ℕ
zero + x = x
succ y + x = succ (y + x)
_*_ : ℕ → ℕ → ℕ
zero * x = zero
succ y * x = x + (y * x)
one = succ zero
data Roman : ℕ → ℕ → Set where
i : Roman one one
{- v : Roman one five
x : Roman ten one
... -}
madeup : ∀ {a b} (x : Roman a b) → (c : ℕ) → Roman a c
record Join (A B C : Set) : Set where
field jo : A → B → C
two : ∀ {a} → Join (Roman a one) (Roman a one) (Roman a (one + one))
two = record { jo = λ l r → madeup l (one + one) }
_#_ : ∀ {a b c d C} → {{j : Join (Roman a b) (Roman c d) C}} → Roman a b → Roman c d → C
(_#_) {{j}} = Join.jo j
-- roman = (_#_) {{two}} i i -- works
roman : Roman one (one + one)
roman = {! i # i!} -- doesn't work
Clearly, if I specify the implicit explicitly, it works - so I am confident it is not the type of the function that is wrong.
Your example works fine in development version of Agda. If you are using a version older than 2.3.2, this passage from release notes could clarify why it doesn't compile for you:
* Instance arguments resolution will now consider candidates which
still expect hidden arguments. For example:
record Eq (A : Set) : Set where
field eq : A → A → Bool
open Eq {{...}}
eqFin : {n : ℕ} → Eq (Fin n)
eqFin = record { eq = primEqFin }
testFin : Bool
testFin = eq fin1 fin2
The type-checker will now resolve the instance argument of the eq
function to eqFin {_}. This is only done for hidden arguments, not
instance arguments, so that the instance search stays non-recursive.
(source)
That is, before 2.3.2, the instance search would completly ignore your two instance because it has a hidden argument.
While instance arguments behave a bit like type classes, note that they will only commit to an instance if there's only one type correct version in scope and they will not perform a recursive search:
Instance argument resolution is not recursive. As an example,
consider the following "parametrised instance":
eq-List : {A : Set} → Eq A → Eq (List A)
eq-List {A} eq = record { equal = eq-List-A }
where
eq-List-A : List A → List A → Bool
eq-List-A [] [] = true
eq-List-A (a ∷ as) (b ∷ bs) = equal a b ∧ eq-List-A as bs
eq-List-A _ _ = false
Assume that the only Eq instances in scope are eq-List and eq-ℕ.
Then the following code does not type-check:
test = equal (1 ∷ 2 ∷ []) (3 ∷ 4 ∷ [])
However, we can make the code work by constructing a suitable
instance manually:
test′ = equal (1 ∷ 2 ∷ []) (3 ∷ 4 ∷ [])
where eq-List-ℕ = eq-List eq-ℕ
By restricting the "instance search" to be non-recursive we avoid
introducing a new, compile-time-only evaluation model to Agda.
(source)
Now, as for the second part of the question: I'm not exactly sure what your final goal is, the structure of the code ultimately depends on what you want to do once you construct the number. That being said, I wrote down a small program that allows you to enter roman numerals without going through the explicit data type (forgive me if I didn't catch your intent clearly):
A roman numeral will be a function which takes a pair of natural numbers - the value of previous numeral and the running total. If it's smaller than previous numeral, we'll subtract its value from the running total, otherwise we add it up. We return the new running total and value of current numeral.
Of course, this is far from perfect, because there's nothing to prevent us from typing I I X and we end up evaluating this as 10. I leave this as an exercise for the interested reader. :)
Imports first (note that I'm using the standard library here, if you do not want to install it, you can just copy the definition from the online repo):
open import Data.Bool
open import Data.Nat
open import Data.Product
open import Relation.Binary
open import Relation.Nullary.Decidable
This is our numeral factory:
_<?_ : Decidable _<_
m <? n = suc m ≤? n
makeNumeral : ℕ → ℕ × ℕ → ℕ × ℕ
makeNumeral n (p , c) with ⌊ n <? p ⌋
... | true = n , c ∸ n
... | false = n , c + n
And we can make a few numerals:
infix 500 I_ V_ X_
I_ = makeNumeral 1
V_ = makeNumeral 5
X_ = makeNumeral 10
Next, we have to apply this chain of functions to something and then extract the running total. This is not the greatest solution, but it looks nice in code:
⟧ : ℕ × ℕ
⟧ = 0 , 0
infix 400 ⟦_
⟦_ : ℕ × ℕ → ℕ
⟦ (_ , c) = c
And finally:
test₁ : ℕ
test₁ = ⟦ X I X ⟧
test₂ : ℕ
test₂ = ⟦ X I V ⟧
Evaluating test₁ via C-c C-n gives us 19, test₂ then 14.
Of course, you can move these invariants into the data type, add new invariants and so on.

Resources