How does function Match of Acumatica works - erp

How does work function Match in Acumatica?
For example I can't understand what following code does (this is code from coderepository.xml). Why in first case we don't mention table, but in second we mention table.
1. Search<InventoryItem.inventoryID,
Where<Match<Current<AccessInfo.userName>>>>
2. Search2<APInvoice.refNbr,
InnerJoin<Vendor, On<APInvoice.vendorID, Equal<Vendor.bAccountID>>>,
Where<APInvoice.docType, Equal<APInvoiceType.invoice>,
And<APInvoice.vendorID, Equal<Current<FAService.vendorID>>,
And<Match<Vendor, Current<AccessInfo.userName>>>>>

Match is used to filter records based on the restriction groups in place. Restriction groups are used to support row-level security; for example you can use that to restrict some users to specific products, specific customers or specific vendors. The internal implementation is quite complex, and relies on a bit mask field called GroupMask. Although it is used on a few specific entity types, it can be extended to work with custom entities.
There's a whole chapter on row-level security in the Acumatica User Guide, which should provide you with all the information you need on setting it up.

Related

Does odata v4 support aggregation on date values?

I am looking for an OData query syntax which helps to solve Sum((DateDiff(minute, StartDate, EndDate) which we do in SqlServer. Is it possible to do such things using OData v4?
I tried the aggregate function but not able to use the sum operator on the duration type. Any idea?
You can't execute a query like that directly in standards compliant v4 service as the built in Aggregates all operate on single fields, for instance there is no support for creating a new arbitrary column to project the results into, this is mainly because the new column is undefined. By restricting the specification to only columns that are pre-defined in the resource itself, we can have a strong level of certainty on the structure of the data that will be returned.
If you are the author of the API, there are three common approaches that can achieve a query similar to your request.
Define a Custom Data Aggregate, this is way more involved than is necessary, but it means you could define the aggregate once and use it in many resource queries.
Only research this solution if you truly need to reuse the same aggregate on multiple resources
Define a Custom Function to compute the result of all or some elements in your query.
Think of a Function as similar to a SQL View, it is really just a way of expressing a custom query and custom response object that is associated with a resource.
It is common to use Functions to apply complex filter conditions that still return the resource that they are bound to, but you can return an entirely different structure of data if you want.
Exploit Open Type, this can sometimes be more effort than you expect, but can be managed if there is only a small number of common transformations you want to apply to the resource and project their results as discrete properties in addition to the standard resource definition.
In your case you could project DateDiff(minute, StartDate, EndDate) into its own discrete column, perhaps called Minutes or Duration. Then you could $apply a simple SUM across this new field.
Exposing a custom Function is usually the least effort approach, because you are not constrained by the shape of the result at all, it can be maintained in relative isolation from the main resource, as with Open Types, the useful thing about functions is that the caller can still apply OData aggregates to the result of the Function.
If the original post is updated with some more detailed code examples, I can elabortate on the function implementation, however in this state I hope this information sets you on the right path.

Indices in Neo4j - questions and doubts

The only indices that I know about them are indices on properties (these indices are created on particular labels (node types)). I have some doubts, however.
Are there exists indices on edges/relationships?
I often read that Neo4j leveraged Lucene Index. Is it still used? What is aim?
Are there exists any other indicses than indices on properties?
Thanks in advance,
Neo4j has two indexing systems.
The more modern one is referred to as "schema indexes", and these are the ones that are automatic and apply to properties of a given label for quick lookup by those properties when the given properties and label are provided within a query. This does not currently support indexing of relationship properties. These started out based on lucene, but we've gradually replaced the implementation with our own native indexing solution. Discussion of these, as well as any noteworthy information and limitations, can be found in our index configuration documentation.
The other indexing system is an older manual system that is called "explicit indexes", though this has previously been called "manual indexes". This is also based on lucene, but these are not automatic -- it is up to the user to manually add or remove entries to the index and keep them up to date when data in the database changes. This makes usage and maintenance cumbersome, and we recommend avoid using this system if possible.
Built-in procedures are the means to create and lookup using explicit indexes, as these are never used automatically under the hood (as opposed to schema indexes). APOC Procedures also offers various means of interfacing with explicit indexes.
The main reason one would use explicit indexes is because you are able to create an index on relationships for properties and get fast lookup when querying the index. This also allows for a full text lookup across multiple labels and properties, provided the index has been configured in such a way.
Separate from all of these, it should be noted that usage of labels is itself a kind of index, as it provides quick access to all nodes with the given label.

how to create a replicable, unique code for a pre-ISBN book

I am putting my collection of some 13000 books in a mySQL database. Most of the copies I possess
can be identified uniquely by ISBN. I need to use this distinguishing code as a foreign key into
another database table.
However, quite a few of my books date from pre-ISBN ages. So for these, I am trying to devise a
scheme to uniquely assign a code, sort of like an SKU.
The code would be strictly for private use. It should have the important property that, when I
obtain a pre-ISBN publication, I could build the code from inspecting the work, and based on the
result search the database to see if I already have other copies in my possession.
Many years ago I think I saw a search scheme for some university(?) catalogue, where you could
perform a search of a title based on a concatenated string' (or code) that was made up of let's
say 8 letters from the title, and 4 from the author, and maybe some other data. For example,
to search 'The Nature of Space and Time' by Stephen Hawking and Roger Penrose you might perform
a search on the string 'Nature SHawk', being comprised of 8 characters from the title (omitting
non-filing words and stopwords) and 4 from the author(s).
I haven't been able to find any information on such scheme's, or whether or not such an approach
was standardized in any way.
Something along these lines could be made up of course, but I was wondering if people here have
heard of such schemes, of have ideas on how to come to a solution to this.
So keep in mind the important property of 'replicability': using the scheme, inspection of a pre-
ISBN dated work should --omitting very special or exclusive cases-- in general lead to a code
that can singly be used to subsequently determine if such a copy is already in the database.
Thank you for your time.
Just use the Title (add Author and Publisher as options) and a series id to produce a fake isbn. Take a look at fake_isbn.
NOTE: use the first digit as a series id but don't use 9!

Gave up DDD, but need some of its benefits

I'm giving up traditional DDD, which is often a massive timewaster, and forces me to do endless mapping: data layer <--> domain layer <--> presentation layer.
For even a small change I must change data models, domain models, presentation models / viewmodels, then the repositories, manager/service classes, and of course the AutoMapper maps, and then test the whole thing! Each call requires calling a layer which calls a layer which calls the underlying code. And I don't get anything in return other than "you might need it in the future". Meh.
My current approach is more pragmatic:
I don't worry about the difference between the "data layer" and "domain layer" any longer, as there's no point - the terms are interchangeable. I let EF do it's thing, and add interfaces and repositories on top when needed.
I've merged my "data" and "domain" projects (into "core", boring name, I know), and I could almost swear that Visual Studio is actually running faster.
I allow EF entities to go up and down the stack, but, I still map them to presentation models / viewmodels as usual.
For simple operations I call repositories directly from controllers, for complex operations I use domain managers/services as usual; the repositories never expose IQueryable.
I define entities/POCOs as partial classes, so I can add domain behavior separately in corresponding partial classes.
The problem: I now use the entities all over the place, so client code can see their navigation properties. And the models are always materialized after they leave a repository, so those navigation properties are often null.
Possible solutions:
1. Live with it. It's ugly but preferable to the problems explained above.
2. For each entity, define an interface which hides the navigation properties; and make client code use the interfaces. But ironically, this means another layer (albeit thin and manageable).
3. What else?
I'm not used to this sort of fast-and-loose programming style, so maybe I'm missing some obvious tricks. Is there anything else I should take into account? I'm sure there are other problems I will encounter soon.
EDIT:
This question is not about DDD. And note that many struggle with a traditional DDD approach -- Seemann appears to arrive at the same conclusion, Rahien speaks about the "Useless Abstraction For The Sake Of Abstraction Anti Pattern", and Evans himself said DDD is only truly useful in 5% of cases. Also see this thread. Some of the comments/answers are predictably about how I'm doing DDD wrong, or how I can tweak my system to do it right. However, I'm not asking about DDD or bashing it for the cases where it is suitable, rather I'd like to know what others are doing in line with the thinking I've described above. It's not as if DDD is a panacea to all design ills, every decade a new process comes out (RUP anyone? XP, Agile, Booch, blah...). DDD is just the shiniest new one, and the most well known and used. But pragmatism should come first as I'm trying to build salable products that ship on time and are easy to maintain. The most useful programming axiom I've learned, by far, is YAGNI. What I want is to change my system to a sort of "DDD-lite", where I get it's strong design/OOP/pattern philosophy, but without the fat.
A typical persistence approach with DDD is to map the domain model directly to corresponding tables. Technically, the mappings are still there (and are usually declared in code), but there is no explicit data model, as pointed out by lazyberezovsky.
The problem with navigation properties can be resolved in a few different ways, regardless of whether you are employing DDD or not. I dislike approach 1 because it makes it more difficult to reason about your code - you never know which properties will be set and which won't. Approach 2 is much better in theory, because it makes it very explicit what that a given query requires and making things explicit is a good practice in general. A similar, but simpler and less brittle approach is to use read-models, which are just objects designed to fulfill requirements of a given query of set of queries. Within the context of DDD, they allow you to decouple behavior rich entities from queries, which are quite often at odds. Now proponents of DRY may scream heresy and come at you with torches and pitchforks, but in practice it is often much easier to maintain a read-model and an entity then to try to coerce entities to fulfill query requirements by way of interfaces or complex mapping strategies. Additionally, the responsibilities of a read-model and a behavior model are quite different, therefore DRY isn't applicable.
This is not to say that DDD is applicable in your scenario. It is often a wise decision to avoid full fledged DDD, especially in scenarios that are mostly CRUD. You are correct to be cautious, a good example of KISS and YAGNI. DDD reaps benefits when your domain consists of complex behavior, not just data. At any rate, the read-model pattern applies.
UPDATE
For implementations that don't employ a read-model, take a look at Fetching Strategy Design where the notion of a fetching strategy allows the specification of exactly what is needed from the database which mitigates issues with navigational properties. The material referenced in the linked post is also of interest. Overall, this attempts to avoid the a layer of indirection present in other approaches. However, in my opinion, using the proposed fetching strategy is more complex than using a read-model while the net result is the same.
Some thoughts about this point:
... the repositories never expose IQueryable ... the models are always
materialized after they leave a repository ...
Your question is tagged with "asp.net-mvc", so you have a web application in mind. 90% or more of all requests will be GET requests that are supposed to fetch some data from the database and show those data in a web view. How often are those needed data really entities rather than only bags of properties (a selection of properties of an entity type or perhaps composed of properties from multiple entities)?
Say, your application has 100 views. Only a minority of these will show complete entities:
50 of them are list views that show selected data (a customer with ID and address, but without the customer's contact person, phone number and sales volume)
20 of them contain autocomplete text boxes to select a reference (the customer for an order, but only the customer's name and city is shown in the autocomplete list, not the rest of the address nor contact person, phone number and sales volume and only the first 5 hits are displayed)
1 is an edit view for a customer that shows everything, but not the sales volume
1 is a details view for a customer with his last five orders
1 is a details view for an order including order items including product of each item but without the product's supplier name
1 is the same view but specialized for the purchasing department that wants to see the supplier for each item and item's product with average supplier's lead time for the last three months.
1 is a view for the service department that shows the order with only the order items of product category "repair service"
1 view for the Human Resources department shows employees including a photo stored as a big blob
1 view for personnel planning department shows a short version of the employee without photo
etc., etc.
As a UI programmer I would have all kinds of data requirements to render a view with the examples above:
I need only a selection of properties
I need even different selections of the same entity's properties for different views
I need an order including all items but without a reference to a product
I need an order including all items (but not all properties of the items) and including a reference to a product and to a supplier (but not all supplier's properties)
I need an order including only a filtered list of order items
I need a customer including the last five orders, not all 3000 orders he ever had
I need an employee but please without the big blob image
etc., etc.
How to fulfill these requirements as a data access/repository/service developer?
I only provide a handful of methods and materialize entities: load order header, load order header with items, load order header with items and product, load order header with items and product and supplier, load customer header (throw 15 of the 20 properties away, dear UI developer, if you only need five properties), load customer header with all 3000 orders (throw 2995 away, dear UI developer, if you only need five), etc., etc. I return interfaces from the repositories that hide not loaded navigation properties.
I care about every detail that the UI needs: I create repository/service methods like GetFiveCustomerPropertiesForAutoComplete, GetCustomerWithLastFiveOrders, etc. etc. I return interfaces from the repositories that hide the properties (also scalar) I haven't loaded. Or I return "DTOs" that contain the requested properties. I change the repository/services and create new DTOs every day when a UI developer calls with a data requirement for the next view.
I return IQueryable<TEntity> from the repositories and tell the UI developer "create the LINQ query yourself to fetch the data you need for your views". (Next morning the DBA is complaining about hundreds of terrible performing database queries.)
I return "prepared" IQueryable<TEntity>s from the repositories/services that cover - for example - security concerns like applying Where clauses for the user's access rights or append a Where clause for a search term or apply a NoTracking option to the query. I tell the UI developer: "You are allowed to extend the query with a) projections (Select), b) paging (Take and Skip) and perhaps c) sorting (OrderBy) because I consider those three query parts as UI concerns. All other query requirements (filtering, joining, grouping, etc.) have to be implemented in the repository/service layer and are forbidden in the UI layer." The most important piece here are projections that materialize ViewModels directly through the LINQ/SQL query without intermediate mapping layer and without the overhead to load more than the needed columns/properties.
These are only some thoughts. Every approach has its benefits and downsides. Working in small teams where at least one or a few developers have an overview what is happening in both the repository/service and the UI/"projection" layer the last option works fine for me in my experience although it doesn't always work with the strict rules decribed (for example, the filter by product category for included order items of an order requires to apply a Where clause inside of the projection, i.e. in the UI layer). For POST requests and data modifications I would use DTOs that send to data collected from a view back to a service to be processed there.
For stricter separation of "query layer" and UI layer I would probably prefer something close to the second option, maybe not with an interface/DTO for every UI requirement, but somehow reduced to a set of DTOs for the most common requirements (with the price of a little overhead of sometimes unnecessarily loaded properties). However, I expect that to be more work than the last option due to the larger amount of necessary repository/service methods, the additional maintenance of (perhaps many) DTOs and the intermediate mapping between DTOs and ViewModels.
Personally I am concerned about materializing full entities, especially complex object graphs, when I don't need them 90% of the time. But my concern is not verified by extensive performance measurements proving that this approach is really a problem for a "normal" application that doesn't have special high performance needs.
How can anyone give you sound advice when we have no clue as to what it is you are building? In the grand scheme of things, you might be building the wrong solution (not saying you are). So do realize all we can relate to is technical design issues and similar past experiences.
Many people face your problem, indeed. The mapping is loose coupling tax in the land of static typing. Maybe a more dynamic language could solve some of your pain. Or maybe you might find virtue in automating more (DSL, MDA). You could also switch to client server instead.
Interfaces are not layers, rather abstractions. Use them wisely.
Personally, I'd never take these shortcuts. Been bitten too many times trying to skip steps. Logic starts popping up in odd places. If I have a data driven app to develop simple datasets come to mind, EF as well. But I don't call the objects aggregate or entity in the DDD sense, just entity in the ERD sense. Transactionscript might be a better fit than doing the partial method sprinkeling. As for read model objects, these are not layers of indirection.
Overall, I get the feeling, and it is just that, you're making a mess of things because you fight the mapping friction by taking on a dependency on objects that don't reveal the required shape (navigation properties that are null) thereby causing problems in a different area.
I'll just try to be short - we went for the method 2 - ie, add layer of interfaces that you use on the client. You can have EF generate them for you, just a little tweak of the .tt templates.
Yes, it creates (yet) another layer, but it's logic-free and adds no complexity. Of course, if your client needs to deserialize entities, you have to add (yet) another layer that will handle deserialization and reference both the entities definitions and the interfaces that he'll return to the client. But it's also thin, so we learned to live with it, because it turned out to work just fine, and the client really stays clean...
The problem: I now use the entities all over the place, so client code
can see their navigation properties.
I don't quite get why this is a problem and how it's related to EF entities in particular. By client code do you mean presentation layer code or any code consuming your entities ?
For UI code a simple solution is to define ViewModels that just don't expose these navigation properties (or only expose a few of them depending on the object graph depth your GUIs need).
For other code it's only normal to be able to see the navigation properties of entities. They are public for a reason. You can end up breaking the Law of Demeter if you abuse them, but it's a matter of developer discipline not to fall into that trap.
An entity contains its own contract - all code that has access to the entity is supposed to be able to use any part of this contract. If you feel like your entities are exposing too much and that you need to put interfaces on top of them to restrain access to certain parts, maybe it's just a different entity.
I don't worry about the difference between the "data layer" and "domain layer" any longer, as there's no point - the terms are
interchangeable. I let EF do it's thing, and add interfaces and
repositories on top when needed.
I've merged my "data" and "domain" projects (into "core", boring name, I know), and I could almost swear that Visual Studio is
actually running faster.
I allow EF entities to go up and down the stack, but, I still map them to presentation models / viewmodels as usual.
For simple operations I call repositories directly from controllers, for complex operations I use domain managers/services as
usual; the repositories never expose IQueryable.
I define entities/POCOs as partial classes, so I can add domain behavior separately in corresponding partial classes.
None of these things seems to be fundamentally anti-DDD to me, except data/domain separation.
Especially if you do database-first EF -DDD is clearly a domain-centric approach and you shouldn't define your tables before defining your entities. It's also not clear whether some of your domain entities talk to the database or EF directly (not DDD - and more generally, layered-architecture - compliant) or you systematically have data access objects in between (DDD compliant).

Trimming BOLD_CLOCKLOG table

I am doing some maintenance on a database for an application that uses the Bold for Delphi object persistence framework. This database has been been in production for several years and several of the tables have grown quite large. One of them is the BOLD_CLOCKLOG which has something to do with Bold's transaction management.
I want to trim this table (it is up to 1.2GB, with entries from Jan 2006).
Can anyone confirm the system does not need this old information?
From the bolds documentation:
BOLD_CLOCKLOG
To be able to map the transaction numbers used in the TimeStamp columns to the corresponding physical time (such as 2001-01-01 12:34) the persistence mapper will store a log with timestamps and times. Normally, this log is written for each database operation, but if the traffic to the database is very intensive, it is possible to restrict how often this log is written by setting the property ClockLogGranularity. The event OnGetCurrentTime should also be implemented to ensure that all clients have the same time.The usage of this table can be controlled with the tagged value: Model.UseClockLog
So I believe this is used for versioning Boldobjects, see Object Versioning Extension in bolds documentation. If your application don't need this you can drop this in the database.
In our Bold application we don't use that feature. Why don't simply test to turn off Bold_ClockLog in the model, drop that big table and try to use your application. I'm pretty sure if something is wrong then it say so at once.
I can also mention that we have an own custom objecthistoy. It is simply big string (as TStringList.DelimetedText) in a ObjectHistory class that have Time, user and a note about action. This suits our need better that Bolds builtin objecthistory. The disadvantage is of course that we need to add calls in the code when logging to history is done.
Bold_ClockLog is an optional table, it's purpose is to store mapping between integer timestamps and corresponding DateTime values.
This allows you to find out datetime of the last modification to any object.
If you don't need this feature feel free to empty the table, it won't cause any problems.
In addition to Bold_ClockLog, the Bold_XFiles is another optional table that tends to grow large. But unlike the Bold_ClockLog the Bold_XFiles can not be emptied.
Both of these tables can be turned on/off in the model tag values.

Resources