Proving number of instances is finite - agda

Suppose, I wanted to postulate a write-consistency rule:
postulate
writeconsistent : {A B : Set} {var : A} {wval rval : B} ->
(w : W var wval) (r : R var rval) -> (store w) hb (load r) ->
(p : (wval' : B) -> (w' : W var wval') ->
Either ((store w') hb (store w)) ((load r) hb (store w'))) ->
wval == rval
This is to say that given a write w and a read r if you can prove that any other write w' either happens-before w, or happens-after r, then we have proof that r reads the value written by w.
But to furnish the function that can order exactly all writes w' seems problematic. It seems it would always be possible to only write a function that can prove something about specific subset of all possible writes.
How to restrict the type of proof p in such a way that it only requires some known writes to be ordered like that?

Related

Does safe Agda support coinduction w/out sized-types?

I recently decided to fool around with coinduction in Agda, and found the "copattern" machinery to be fairly brittle. I decided to cut to the chase and define M types, which more-or-less generalize all the coinductive types (setting coinduction-recursion aside). My hope was to sidestep the whole copattern mess entirely, but to my surprise, it seems that copatterns aren't capable of handling the M constructor:
{-# OPTIONS --safe #-}
module M {l}
(Index : Set l)
(Shape : Index -> Set l)
(Position : (i : Index) -> Shape i -> Set l)
(index : (i : Index) -> (s : Shape i) -> Position i s -> Index) where
record M (i : Index) : Set l where
coinductive
field shape : Shape i
field children : (p : Position i shape) -> M (index i shape p)
open M
record MBase (Rec : Index -> Set l) (i : Index) : Set l where
coinductive
field shapeB : Shape i
field childrenB : (p : Position i shapeB) -> Rec (index i shapeB p)
open MBase
unroll : (S : Index -> Set l) -> (∀ {i} -> S i -> MBase S i) -> ∀ {i} -> S i -> M i
shape (unroll S u s) = shapeB (u s)
children (unroll S u s) p = unroll S u (childrenB (u s) p)
produces:
Termination checking failed for the following functions:
unroll
Problematic calls:
shape (unroll S u s)
unroll S u (childrenB (u s) p)
I tried a couple of minor variations, to no avail. Is there an incantation that causes safe agda to accept some variant of M?
For the record, I'm aware that I have a number of options available to me, including:
turning on --sized-types and indexing M on a size
turning off --safe and promising the compiler that unroll is productive
maybe try "old-style coinduction", which may or may not be consistent (?)
I find all of these at least mildly unpalatable, and am surprised that vanilla safe agda cannot handle this case (given that it's the one case that, if handled, leaves the user an escape hatch). Am I missing something?
'twas a bug. A fix is scheduled for agda 2.6.1.

How to choose the design for a well-founded inductive type?

While studying well-foundedness, I wanted to see how different designs behave. For example, for a type:
data _<_ (x : Nat) : Nat -> Set where
<-b : x < (suc x)
<-s : (y : Nat) -> x < y -> x < (suc y)
well-foundedness is easy to demonstrate. But if a similar type is defined differently:
data _<_ : Nat -> Nat -> Set where
z-< : (m : Nat) -> zero < (suc m)
s<s : (m n : Nat) -> m < n -> (suc m) < (suc n)
It is obvious that in both cases the descending chain is not infinite, but in the second case well-foundedness is not easy to demonstrate: it is not easy to show (y -> y < x -> Acc y) exists for a given x.
Are there some principles that help choose the designs like the first in preference to the designs like the second?
It's not impossibly hard to prove well-foundedness of the second definition, it just requires extra theorems. Here, relying on decidability of _==_ for Nat, we can construct new _<_ for the case (suc y) != x, and can rewrite the target types to use the solution to the problem known to decrease in size as the solution for suc y.
-- trying to express well-foundedness is tricky, because of how x < y is defined:
-- since both x and y decrease in the inductive step case, need special effort to
-- prove when the induction stops - when no more constructors are available
<-Well-founded : Well-founded Nat _<_
<-Well-founded x = acc (aux x) where
aux : (x y : Nat) -> y < x -> Acc _<_ y
aux zero y ()
aux x zero z-< = acc \_ ()
aux (suc x) (suc y) (s<s y<x) with is-eq? (suc y) x
... | no sy!=x = aux x (suc y) (neq y<x sy!=x)
... | yes sy==x rewrite sy==x = <-Well-founded x
The first definition is "canonical" in a sense, while the second one is not. In Agda, every inductive type has a subterm relation which is well-founded and transitive, although not necessarily total, decidable or proof-irrelevant. For W-types, it's the following:
open import Data.Product
open import Data.Sum
open import Relation.Binary.PropositionalEquality
data W (S : Set)(P : S → Set) : Set where
lim : ∀ s → (P s → W S P) → W S P
_<_ : ∀ {S P} → W S P → W S P → Set
a < lim s f = ∃ λ p → a ≡ f p ⊎ a < f p
If we define Nat as a W-type, then the generic _<_ is the same as the first definition. The first definition establishes a subterm relation even if we have no idea about the constructors of Nat. The second definition is only a subterm relation because we know that zero is reachable from every suc n. If we added an extra zero' : Nat constructor, then this would not be the case anymore.

How to make Agda pretty-print products nicely

Consider the following self-contained program:
module Test where
record Σ {A : Set} (B : A -> Set) : Set where
constructor _,_
field
fst : A
snd : B fst
open Σ public
infixr 0 _,_
_×_ : Set -> Set -> Set
A × B = Σ (\ (_ : A) -> B)
infixr 10 _×_
f : {A B : Set} → A × B → A
f x = {!!}
If you C-c C-l in the goal, you get:
Goal: .A
————————————————————————————————————————————————————————————
x : Σ (λ _ → .B)
.B : Set
.A : Set
i.e. you see the underlying sigma, and the type of the binder of the lambda is hidden. This is pretty annoying. Is there a way to make Agda show the type of binders that don't bind names by default?
This is Agda 2.3.2.2.
Agda 2.4.3 displays x : .A × .B.
You can use the abstract keyword:
abstract
_×_ : Set -> Set -> Set
A × B = Σ (\ (_ : A) -> B)
fst' : ∀ {A B} -> A × B -> A
fst' (x , y) = x
snd' : ∀ {A B} -> A × B -> B
snd' (x , y) = y
But that's definitely overkill (and it looks like pattern synonyms do not work in abstract blocks).
It's much more annoying to me, that Agda doesn't want to reduce functions like flip and especially _∘_, but unfolds some functions with really long definitions. Agda needs a mechanism for fixing these problems.
It appears that this problem has been fixed in the latest version of Agda, so you should upgrade.

How do I prove a "seemingly obvious" fact when relevant types are abstracted by a lambda in Idris?

I am writing a basic monadic parser in Idris, to get used to the syntax and differences from Haskell. I have the basics of that working just fine, but I am stuck on trying to create VerifiedSemigroup and VerifiedMonoid instances for the parser.
Without further ado, here's the parser type, Semigroup, and Monoid instances, and the start of a VerifiedSemigroup instance.
data ParserM a = Parser (String -> List (a, String))
parse : ParserM a -> String -> List (a, String)
parse (Parser p) = p
instance Semigroup (ParserM a) where
p <+> q = Parser (\s => parse p s ++ parse q s)
instance Monoid (ParserM a) where
neutral = Parser (const [])
instance VerifiedSemigroup (ParserM a) where
semigroupOpIsAssociative (Parser p) (Parser q) (Parser r) = ?whatGoesHere
I'm basically stuck after intros, with the following prover state:
-Parser.whatGoesHere> intros
---------- Other goals: ----------
{hole3},{hole2},{hole1},{hole0}
---------- Assumptions: ----------
a : Type
p : String -> List (a, String)
q : String -> List (a, String)
r : String -> List (a, String)
---------- Goal: ----------
{hole4} : Parser (\s => p s ++ q s ++ r s) =
Parser (\s => (p s ++ q s) ++ r s)
-Parser.whatGoesHere>
It looks like I should be able to use rewrite together with appendAssociative somehow,
but I don't know how to "get inside" the lambda \s.
Anyway, I'm stuck on the theorem-proving part of the exercise - and I can't seem to find much Idris-centric theorem proving documentation. I guess maybe I need to start looking at Agda tutorials (though Idris is the dependently-typed language I'm convinced I want to learn!).
The simple answer is that you can't. Reasoning about functions is fairly awkward in intensional type theories. For example, Martin-Löf's type theory is unable to prove:
S x + y = S (x + y)
0 + y = y
x +′ S y = S (x + y)
x +′ 0 = x
_+_ ≡ _+′_ -- ???
(as far as I know, this is an actual theorem and not just "proof by lack of imagination"; however, I couldn't find the source where I read it). This also means that there is no proof for the more general:
ext : ∀ {A : Set} {B : A → Set}
{f g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g
This is called function extensionality: if you can prove that the results are equal for all arguments (that is, the functions are equal extensionally), then the functions are equal as well.
This would work perfectly for the problem you have:
<+>-assoc : {A : Set} (p q r : ParserM A) →
(p <+> q) <+> r ≡ p <+> (q <+> r)
<+>-assoc (Parser p) (Parser q) (Parser r) =
cong Parser (ext λ s → ++-assoc (p s) (q s) (r s))
where ++-assoc is your proof of associative property of _++_. I'm not sure how would it look in tactics, but it's going to be fairly similar: apply congruence for Parser and the goal should be:
(\s => p s ++ q s ++ r s) = (\s => (p s ++ q s) ++ r s)
You can then apply extensionality to get assumption s : String and a goal:
p s ++ q s ++ r s = (p s ++ q s) ++ r s
However, as I said before, we don't have function extensionality (note that this is not true for type theories in general: extensional type theories, homotopy type theory and others are able to prove this statement). The easy option is to assume it as an axiom. As with any other axiom, you risk:
Losing consistency (i.e. being able to prove falsehood; though I think function extensionality is OK)
Breaking reduction (what does a function that does case analysis only for refl do when given this axiom?)
I'm not sure how Idris handles axioms, so I won't go into details. Just beware that axioms can mess up some stuff if you are not careful.
The hard option is to work with setoids. A setoid is basically a type equipped with custom equality. The idea is that instead of having a Monoid (or VerifiedSemigroup in your case) that works on the built-in equality (= in Idris, ≡ in Agda), you have a special monoid (or semigroup) with different underlying equality. This is usually done by packing the monoid (semigroup) operations together with the equality and bunch of proofs, namely (in pseudocode):
= : A → A → Set -- equality
_*_ : A → A → A -- associative binary operation
1 : A -- neutral element
=-refl : x = x
=-trans : x = y → y = z → x = z
=-sym : x = y → y = x
*-cong : x = y → u = v → x * u = y * v -- the operation respects
-- our equality
*-assoc : x * (y * z) = (x * y) * z
1-left : 1 * x = x
1-right : x * 1 = x
The choice of equality for parsers is clear: two parsers are equal if their outputs agree for all possible inputs.
-- Parser equality
_≡p_ : {A : Set} (p q : ParserM A) → Set
Parser p ≡p Parser q = ∀ x → p x ≡ q x
This solution comes with different tradeoffs, namely that the new equality cannot fully substitute the built-in one (this tends to show up when you need to rewrite some terms). But it's great if you just want to show that your code does what it's supposed to do (up to some custom equality).

Arbitrary evaluation in the type signature in agda

So I have another "simple" Adga question. I wanted to have a proof that used arbitrary evaluations as premises and results. But I don't think I know the type system well enough to do that.
as a simple example take
f : {S : Set} -> (a : S)
-> ( R : S -> Set)
-> (R a)
f aa rr = rr aa
which has a compilation error
Set !=< rr aa of type Set1
when checking that the expression rr aa has type rr aa
of course
f : {S : Set} -> (a : S)
-> ( R : S -> Set)
-> Set
f aa rr = rr aa
compiles fine
as does
f : {S : Set} -> (a : S)
-> ( R : S -> Set)
-> (R a)
-> (R a)
f _ _ ra = ra
What does (R a) means in context? Can it be constructed? How can it be constructed?
In your first example the expression rr aa has type Set, because it is the result of the application of aa of type S to the function rr of type S -> Set.
The type signature of your function demands a result type of R a though. Given the naming of your parameters the expected result type is rr aa. The type checker now tries to unify the expected type (rr aa) with the expression type (Set) and fails.
In fact a function of the type given above would be inconsistent with the type theory:
no-f : (f : {S : Set} → (a : S) → (R : S → Set) → R a) → ⊥
no-f f = f tt (λ _ → ⊥)
In other words, assuming there was a function of the type above, an element of the empty type (⊥) could be produced. So in general you cannot construct elements of type R a without additional requirements.
Imports used above:
open import Data.Empty
open import Data.Unit

Resources