Having trouble creating my Neural Network inputs - machine-learning

I'm currently working on a neural network that should have N parameters in input. Each parameters can have M different values (discrete values), let's say {A,B,C,…,M}. It also has a discrete number of outputs.
How can I create my inputs from this situation? Should I have N×M inputs (having 0 or 1 as value), or should I think of a different approach?

You can either have NxM boolean inputs or have N inputs where each one is a float that goes from 0 to 1. In the latter case the float values would be: {A/M, B/M, C/M, ... 1}. For example if you have 4 inputs each one with discrete values: {1,2,3,4} then you can change the domain values to {0.25 , 0.50 , 0.75 , 1.00}.
Actually there are a lot of ways to encode your inputs, but I have found better results when my inputs lie in the domain [0,1] (as there are some ML functions that expect that).

Related

Ternary Classification of the type 'A', 'B' or 'any'?

For any general machine learning model (though I am currently working with neural networks), for the task of
classifying the elements of a set into three groups ('A' or 'B' or 'any'),
(here, labeling as 'A' means that the only valid label is 'A' (similarly 'B'), and 'any' means that both the tags 'A' and 'B' are equally valid), what kind of loss function should be used?
This can be solved using the techniques related to the more general problem of "ternary classification," but I think I'll lose some information by this generalization.
For the sake of example, let's say we want to classify verbs (English language) according to their tense forms (let us only consider the present and past tense)
Then the model should classify
{"work", "eat", "sing", ...} as "present tense"
{"worked", "ate", "sang", ...} as "past tense"
and,
{"read", "put", "cut", ...} as "any"
(note that the pronunciation is different for the present and past tense of 'read', but we are considering text-based classification)
This is different from the task that I am working on but probably should work as a valid example for this particular question.
PS: I am a student, and only have a basic understanding of this field, so if needed, please ask for any clarification regarding the question.
I think that you are in the situation of multi-label classification and not multi-class classifcation.
As stated here:
In machine learning, multi-label classification and the strongly
related problem of multi-output classification are variants of the
classification problem where multiple labels may be assigned to each
instance
Which means that instances can have more than 1 class associated to them.
Usually, when you work with a binary classification (e.g. 0, 1 classes) you can have as final layer of your network one neuron, which will output continues values between 0 and 1, using as activation function the sigmoid one, and as loss the binary cross-entropy
Given your situation you could decide to use:
two neurons as output of your neural network
for each one you can use the sigmoid activation function
and as loss the binary-cross entropy
in this way, each instance can be associated with both classes with a specific probability by the model.
This means that for each instance, you should associate two classes, or rather "labels".
For example, for your verbs you should have "past", "present" classes:
present past
work: 1 0
worked: 0 1
read 1 1
And your model will try to output two probabilities, with the architecture explained before:
present past sum
work: 0.9 0.3 1.2
worked: 0.21 0.8 1.01
read 0.86 0.7 1.5
Basically, you have two independent probabilites (if you check, the sum of one row is not 1), and therefore you can associate to one instance both classes.
Instead, if you wanted a mutually exclusive classification, with more than 2 classes, you should have used the categorical crossentropy as loss, and the softmax activation function in your last layer, the which will basically handle the outputs to generate a vector of probabilities that sums to 1. Example
present past both sum
work: 0.7 0.2 0.1 1
worked: 0.21 0.7 0.19 1
read 0.33 0.33 0.33 1
Check here to see an extensive example

Could the inputs of the Perceptron training algorithm be had different types?

Have to have the inputs in the Perceptron training algorithm the same type?
i.e Could one input be had a boolean type and another input be had integer type?
They cannot be arbitrary. Look at the calculation steps and termination condition (convergence criterion):
Update:
y[j](t) = f[w(t) ⋅ x[j] ]
= f[w[0](t) x[j,0] + w[1](t) x[j,1] + ⋯ + w[n](t) x[j,n] ]
Convergence:
error = sum(abs(d[j] - y[j](t) )for all j)
error / j_max < epsilon
This requires that you have at least a partially-ordered data type with defined dot-product with your weight type, (usually multiplication with the weight type and addition on the product type), subtraction for the error computation, and some valid convergence value epsilon.
I strongly recommend that you stick with real (float or double) weights. Your input could be of another type if you're properly formal about the operations, but it's a bit tricky in practice: can you define that dot-product on your input and weight vector? For string input, what is
"hello" ⋅ [0.66, 0.21, -1.13]
More generally, how do you store an evaluation vector in your perceptron and then measure how well it matches the input? How do you adjust the vector in back-propagation?
If you can manage those, you can handle your input type.
Personally, I recommend that you stick with the first suggestion: map your inputs to numbers if you can.
It is based on which library you are using for building it. In general all neural networks have just one type of input - decimals. Nothing else is supported from theoretical point of view. What all libraries do under the hood is convert any other data type to decimal input. Strings are converted via dictionaries, booleans - just to 0 and 1 (or -1 and 1) etc.

How to decide numClasses parameter to be passed to Random Forest algorithm in SPark MLlib with pySpark

I am working on Classification using Random Forest algorithm in Spark have a sample dataset that looks like this:
Level1,Male,New York,New York,352.888890
Level1,Male,San Fransisco,California,495.8001345
Level2,Male,New York,New York,-495.8001345
Level1,Male,Columbus,Ohio,165.22352099
Level3,Male,New York,New York,495.8
Level4,Male,Columbus,Ohio,652.8
Level5,Female,Stamford,Connecticut,495.8
Level1,Female,San Fransisco,California,495.8001345
Level3,Male,Stamford,Connecticut,-552.8234
Level6,Female,Columbus,Ohio,7000
Here the last value in each row will serve as a label and rest serve as features. But I want to treat label as a category and not a number. So 165.22352099 will denote a category and so will -552.8234. For this I have encoded my features as well as label into categorical data. Now what I am having difficulty in is deciding what should I pass for numClasses parameter in Random Forest algorithm in Spark MlLib? I mean should it be equal to number of unique values in my label? My label has like 10000 unique values so if I put 10000 as value of numClasses then wouldn't it decrease the performance dramatically?
Here is the typical signature of building a model for Random Forest in MlLib:
model = RandomForest.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
numTrees=3, featureSubsetStrategy="auto",
impurity='gini', maxDepth=4, maxBins=32)
The confusion comes from the fact that you are doing something that you should not do. You problem is clearly a regression/ranking, not a classification. Why would you think about it as a classification? Try to answer these two questions:
Do you have at least 100 samples per each value (100,000 * 100 = 1,000,000)?
Is there completely no structure in the classes, so for example - are objects with value "200" not more similar to those with value "100" or "300" than to those with value "-1000" or "+2300"?
If at least one answer is no, then you should not treat this as a classification problem.
If for some weird reason you answered twice yes, then the answer is: "yes, you should encode each distinct value as a different class" thus leading to 10000 unique classes, which leads to:
extremely imbalanced classification (RF, without balancing meta-learner will nearly always fail in such scenario)
extreme number of classes (there are no models able to solve it, for sure RF will not solve it)
extremely small dimension of the problem- looking at as small is your number of features I would be surprised if you could predict from that binary classifiaction. As you can see how irregular are these values, you have 3 points which only diverge in first value and you get completely different results:
Level1,Male,New York,New York,352.888890
Level2,Male,New York,New York,-495.8001345
Level3,Male,New York,New York,495.8
So to sum up, with nearly 100% certainty this is not a classification problem, you should either:
regress on last value (keyword: reggresion)
build a ranking (keyword: learn to rank)
bucket your values to at most 10 different values and then - classify (keywords: imbalanced classification, sparse binary representation)

Encog query classification

I'm trying to process this dataset using Encog. In order to do so, I combined the outputs into one (can't seem to figure out how to use multiple expected outputs, even tho I unsuccessfully tried to manually train a NN with 4 output neurons) with the values: "disease1", "disease2", "none" and "both".
Starting from there, used the analyst wizard in the CSV, and the automatic process trained a NN with the expected outputs. A peak from the file:
"field:1","field:2","field:3","field:4","field:5","field:6","field:7","Output:field:7"
40.5,yes,yes,yes,yes,no,both,both
41.2,no,yes,yes,no,yes,second,second
Now my problem is: how do I query it? I tried with classification, but as far as I've understood, the result only gives me the values {0,1,2}, so there are two classes which I can't differentiate (both are 0).
This same problem applies to the Iris example presented in the wiki. Also, how does Encog extrapolate from the output neuron values to the 0/1/2 results?
Edit: the solution I have found was to use a separate network for disease 1 and disease 2, but I really would like to know if it was possible to combine those into one.
You are correct, that you will need to combine the output column to a single value. Encog analyst will only classify to a single output column. That output column can have many different values. So normalizing the two output columns to none,first,second,both will work. If you use the underlying neural networks directly, you could actually train for two outputs each doing an independent classification. But for this discussion I will assume we are dealing with the analyst.
Are you querying the network using the workbench, or in code? By default Encog analyst encodes to the neural network using equilateral encoding. This results in a number of output neurons equal to n-1, where n is the number of classes. If you choose one-of-n encoding in the analyst wizard, then the regular classify method on the BasicNetwork will work, as it is only designed for one-of-n.
If you would like to query (in code) using equilateral, then you can use a method similar to the following. I am adding this to the next version of Encog.
/**
* Used to classify a neural network that has been encoded using equilateral encoding.
* This is the default for the Encog analyst. Equilateral encoding uses an output count
* equal to the number of classes minus one.
* #param input The input to the neural network.
* #param high The high value of the activation range, usually 1.
* #param low The low end of the normalization range, usually -1 or 0.
* #return The class that the input belongs to.
*/
public int classifyEquilateral(final MLData input,double high, double low) {
MLData result = this.compute(input);
Equilateral eq = new Equilateral(getOutputCount()+1,high,low);
return eq.decode(result.getData());
}

What is the role of the bias in neural networks? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
I'm aware of the gradient descent and the back-propagation algorithm. What I don't get is: when is using a bias important and how do you use it?
For example, when mapping the AND function, when I use two inputs and one output, it does not give the correct weights. However, when I use three inputs (one of which is a bias), it gives the correct weights.
I think that biases are almost always helpful. In effect, a bias value allows you to shift the activation function to the left or right, which may be critical for successful learning.
It might help to look at a simple example. Consider this 1-input, 1-output network that has no bias:
The output of the network is computed by multiplying the input (x) by the weight (w0) and passing the result through some kind of activation function (e.g. a sigmoid function.)
Here is the function that this network computes, for various values of w0:
Changing the weight w0 essentially changes the "steepness" of the sigmoid. That's useful, but what if you wanted the network to output 0 when x is 2? Just changing the steepness of the sigmoid won't really work -- you want to be able to shift the entire curve to the right.
That's exactly what the bias allows you to do. If we add a bias to that network, like so:
...then the output of the network becomes sig(w0*x + w1*1.0). Here is what the output of the network looks like for various values of w1:
Having a weight of -5 for w1 shifts the curve to the right, which allows us to have a network that outputs 0 when x is 2.
A simpler way to understand what the bias is: it is somehow similar to the constant b of a linear function
y = ax + b
It allows you to move the line up and down to fit the prediction with the data better.
Without b, the line always goes through the origin (0, 0) and you may get a poorer fit.
Here are some further illustrations showing the result of a simple 2-layer feed forward neural network with and without bias units on a two-variable regression problem. Weights are initialized randomly and standard ReLU activation is used. As the answers before me concluded, without the bias the ReLU-network is not able to deviate from zero at (0,0).
Two different kinds of parameters can
be adjusted during the training of an
ANN, the weights and the value in the
activation functions. This is
impractical and it would be easier if
only one of the parameters should be
adjusted. To cope with this problem a
bias neuron is invented. The bias
neuron lies in one layer, is connected
to all the neurons in the next layer,
but none in the previous layer and it
always emits 1. Since the bias neuron
emits 1 the weights, connected to the
bias neuron, are added directly to the
combined sum of the other weights
(equation 2.1), just like the t value
in the activation functions.1
The reason it's impractical is because you're simultaneously adjusting the weight and the value, so any change to the weight can neutralize the change to the value that was useful for a previous data instance... adding a bias neuron without a changing value allows you to control the behavior of the layer.
Furthermore the bias allows you to use a single neural net to represent similar cases. Consider the AND boolean function represented by the following neural network:
(source: aihorizon.com)
w0 corresponds to b.
w1 corresponds to x1.
w2 corresponds to x2.
A single perceptron can be used to
represent many boolean functions.
For example, if we assume boolean values
of 1 (true) and -1 (false), then one
way to use a two-input perceptron to
implement the AND function is to set
the weights w0 = -3, and w1 = w2 = .5.
This perceptron can be made to
represent the OR function instead by
altering the threshold to w0 = -.3. In
fact, AND and OR can be viewed as
special cases of m-of-n functions:
that is, functions where at least m of
the n inputs to the perceptron must be
true. The OR function corresponds to
m = 1 and the AND function to m = n.
Any m-of-n function is easily
represented using a perceptron by
setting all input weights to the same
value (e.g., 0.5) and then setting the
threshold w0 accordingly.
Perceptrons can represent all of the
primitive boolean functions AND, OR,
NAND ( 1 AND), and NOR ( 1 OR). Machine Learning- Tom Mitchell)
The threshold is the bias and w0 is the weight associated with the bias/threshold neuron.
The bias is not an NN term. It's a generic algebra term to consider.
Y = M*X + C (straight line equation)
Now if C(Bias) = 0 then, the line will always pass through the origin, i.e. (0,0), and depends on only one parameter, i.e. M, which is the slope so we have less things to play with.
C, which is the bias takes any number and has the activity to shift the graph, and hence able to represent more complex situations.
In a logistic regression, the expected value of the target is transformed by a link function to restrict its value to the unit interval. In this way, model predictions can be viewed as primary outcome probabilities as shown:
Sigmoid function on Wikipedia
This is the final activation layer in the NN map that turns on and off the neuron. Here also bias has a role to play and it shifts the curve flexibly to help us map the model.
A layer in a neural network without a bias is nothing more than the multiplication of an input vector with a matrix. (The output vector might be passed through a sigmoid function for normalisation and for use in multi-layered ANN afterwards, but that’s not important.)
This means that you’re using a linear function and thus an input of all zeros will always be mapped to an output of all zeros. This might be a reasonable solution for some systems but in general it is too restrictive.
Using a bias, you’re effectively adding another dimension to your input space, which always takes the value one, so you’re avoiding an input vector of all zeros. You don’t lose any generality by this because your trained weight matrix needs not be surjective, so it still can map to all values previously possible.
2D ANN:
For a ANN mapping two dimensions to one dimension, as in reproducing the AND or the OR (or XOR) functions, you can think of a neuronal network as doing the following:
On the 2D plane mark all positions of input vectors. So, for boolean values, you’d want to mark (-1,-1), (1,1), (-1,1), (1,-1). What your ANN now does is drawing a straight line on the 2d plane, separating the positive output from the negative output values.
Without bias, this straight line has to go through zero, whereas with bias, you’re free to put it anywhere.
So, you’ll see that without bias you’re facing a problem with the AND function, since you can’t put both (1,-1) and (-1,1) to the negative side. (They are not allowed to be on the line.) The problem is equal for the OR function. With a bias, however, it’s easy to draw the line.
Note that the XOR function in that situation can’t be solved even with bias.
When you use ANNs, you rarely know about the internals of the systems you want to learn. Some things cannot be learned without a bias. E.g., have a look at the following data: (0, 1), (1, 1), (2, 1), basically a function that maps any x to 1.
If you have a one layered network (or a linear mapping), you cannot find a solution. However, if you have a bias it's trivial!
In an ideal setting, a bias could also map all points to the mean of the target points and let the hidden neurons model the differences from that point.
Modification of neuron WEIGHTS alone only serves to manipulate the shape/curvature of your transfer function, and not its equilibrium/zero crossing point.
The introduction of bias neurons allows you to shift the transfer function curve horizontally (left/right) along the input axis while leaving the shape/curvature unaltered.
This will allow the network to produce arbitrary outputs different from the defaults and hence you can customize/shift the input-to-output mapping to suit your particular needs.
See here for graphical explanation:
http://www.heatonresearch.com/wiki/Bias
In a couple of experiments in my masters thesis (e.g. page 59), I found that the bias might be important for the first layer(s), but especially at the fully connected layers at the end it seems not to play a big role.
This might be highly dependent on the network architecture / dataset.
If you're working with images, you might actually prefer to not use a bias at all. In theory, that way your network will be more independent of data magnitude, as in whether the picture is dark, or bright and vivid. And the net is going to learn to do it's job through studying relativity inside your data. Lots of modern neural networks utilize this.
For other data having biases might be critical. It depends on what type of data you're dealing with. If your information is magnitude-invariant --- if inputting [1,0,0.1] should lead to the same result as if inputting [100,0,10], you might be better off without a bias.
Bias determines how much angle your weight will rotate.
In a two-dimensional chart, weight and bias can help us to find the decision boundary of outputs.
Say we need to build a AND function, the input(p)-output(t) pair should be
{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}
Now we need to find a decision boundary, and the ideal boundary should be:
See? W is perpendicular to our boundary. Thus, we say W decided the direction of boundary.
However, it is hard to find correct W at first time. Mostly, we choose original W value randomly. Thus, the first boundary may be this:
Now the boundary is parallel to the y axis.
We want to rotate the boundary. How?
By changing the W.
So, we use the learning rule function: W'=W+P:
W'=W+P is equivalent to W' = W + bP, while b=1.
Therefore, by changing the value of b(bias), you can decide the angle between W' and W. That is "the learning rule of ANN".
You could also read Neural Network Design by Martin T. Hagan / Howard B. Demuth / Mark H. Beale, chapter 4 "Perceptron Learning Rule"
In simpler terms, biases allow for more and more variations of weights to be learnt/stored... (side-note: sometimes given some threshold). Anyway, more variations mean that biases add richer representation of the input space to the model's learnt/stored weights. (Where better weights can enhance the neural net’s guessing power)
For example, in learning models, the hypothesis/guess is desirably bounded by y=0 or y=1 given some input, in maybe some classification task... i.e some y=0 for some x=(1,1) and some y=1 for some x=(0,1). (The condition on the hypothesis/outcome is the threshold I talked about above. Note that my examples setup inputs X to be each x=a double or 2 valued-vector, instead of Nate's single valued x inputs of some collection X).
If we ignore the bias, many inputs may end up being represented by a lot of the same weights (i.e. the learnt weights mostly occur close to the origin (0,0).
The model would then be limited to poorer quantities of good weights, instead of the many many more good weights it could better learn with bias. (Where poorly learnt weights lead to poorer guesses or a decrease in the neural net’s guessing power)
So, it is optimal that the model learns both close to the origin, but also, in as many places as possible inside the threshold/decision boundary. With the bias we can enable degrees of freedom close to the origin, but not limited to origin's immediate region.
In neural networks:
Each neuron has a bias
You can view bias as a threshold (generally opposite values of threshold)
Weighted sum from input layers + bias decides activation of a neuron
Bias increases the flexibility of the model.
In absence of bias, the neuron may not be activated by considering only the weighted sum from the input layer. If the neuron is not activated, the information from this neuron is not passed through rest of the neural network.
The value of bias is learnable.
Effectively, bias = — threshold. You can think of bias as how easy it is to get the neuron to output a 1 — with a really big bias, it’s very easy for the neuron to output a 1, but if the bias is very negative, then it’s difficult.
In summary: bias helps in controlling the value at which the activation function will trigger.
Follow this video for more details.
Few more useful links:
geeksforgeeks
towardsdatascience
Expanding on zfy's explanation:
The equation for one input, one neuron, one output should look:
y = a * x + b * 1 and out = f(y)
where x is the value from the input node and 1 is the value of the bias node;
y can be directly your output or be passed into a function, often a sigmoid function. Also note that the bias could be any constant, but to make everything simpler we always pick 1 (and probably that's so common that zfy did it without showing & explaining it).
Your network is trying to learn coefficients a and b to adapt to your data.
So you can see why adding the element b * 1 allows it to fit better to more data: now you can change both slope and intercept.
If you have more than one input your equation will look like:
y = a0 * x0 + a1 * x1 + ... + aN * 1
Note that the equation still describes a one neuron, one output network; if you have more neurons you just add one dimension to the coefficient matrix, to multiplex the inputs to all nodes and sum back each node contribution.
That you can write in vectorized format as
A = [a0, a1, .., aN] , X = [x0, x1, ..., 1]
Y = A . XT
i.e. putting coefficients in one array and (inputs + bias) in another you have your desired solution as the dot product of the two vectors (you need to transpose X for the shape to be correct, I wrote XT a 'X transposed')
So in the end you can also see your bias as is just one more input to represent the part of the output that is actually independent of your input.
To think in a simple way, if you have y=w1*x where y is your output and w1 is the weight, imagine a condition where x=0 then y=w1*x equals to 0.
If you want to update your weight you have to compute how much change by delw=target-y where target is your target output. In this case 'delw' will not change since y is computed as 0. So, suppose if you can add some extra value it will help y = w1x + w01, where bias=1 and weight can be adjusted to get a correct bias. Consider the example below.
In terms of line slope, intercept is a specific form of linear equations.
y = mx + b
Check the image
image
Here b is (0,2)
If you want to increase it to (0,3) how will you do it by changing the value of b the bias.
For all the ML books I studied, the W is always defined as the connectivity index between two neurons, which means the higher connectivity between two neurons.
The stronger the signals will be transmitted from the firing neuron to the target neuron or Y = w * X as a result to maintain the biological character of neurons, we need to keep the 1 >=W >= -1, but in the real regression, the W will end up with |W| >=1 which contradicts how the neurons are working.
As a result, I propose W = cos(theta), while 1 >= |cos(theta)|, and Y= a * X = W * X + b while a = b + W = b + cos(theta), b is an integer.
Bias acts as our anchor. It's a way for us to have some kind of baseline where we don't go below that. In terms of a graph, think of like y=mx+b it's like a y-intercept of this function.
output = input times the weight value and added a bias value and then apply an activation function.
The term bias is used to adjust the final output matrix as the y-intercept does. For instance, in the classic equation, y = mx + c, if c = 0, then the line will always pass through 0. Adding the bias term provides more flexibility and better generalisation to our neural network model.
The bias helps to get a better equation.
Imagine the input and output like a function y = ax + b and you need to put the right line between the input(x) and output(y) to minimise the global error between each point and the line, if you keep the equation like this y = ax, you will have one parameter for adaptation only, even if you find the best a minimising the global error it will be kind of far from the wanted value.
You can say the bias makes the equation more flexible to adapt to the best values

Resources