removing duplicates labels in geoserver tiled wms - openlayers-3

i have hard time finding an example for avoiding duplicates labels in geoserver tiled wms through ol3. Any chance someone has a link or a piece of code ?
regards

You can use the centroid function to find the geometry in the label rule, then most of the polygons will labelled correctly. The only other issue is where they fall near the edge of the tile, then you need to set the gutter in GWC to allow them to run over.

Related

How do you extract noisy connected components from an image?

I have a number of polygonal regions (red) in an image delineated by line segments (cyan). However the lines are noisy and incomplete, they aren't perfectly straight and the have chunks missing. Is there a way to robustly extract the intended red polygons?
If the lines were clean and not broken up connected components would solve this nicely. I've experimented with trying to complete the line segments using Hough transform with little success.
EDIT: Another thought I had was to detect the intersection points of the line segments by first taking the medial axis tranform of the cyan pixels then having a sliding window move over the image and finding windows where there are three or more separate red regions which would indicate locations of cyan intersections. But then not sure what next ..
I know you probably tried this out, but... Did you apply some morphology? maybe some dilations followed by some erosions, maybe at a ratio of 5:2 to preserve and enhance the connections of the components. Did you test using different Structuring Elements?

Can I draw great circle segment (geodesic) lines in Openlayers 3?

I want to plot lines between (distant) points on an Openlayers 3 map (which uses Open Street Map tiles). I want the lines to be seen as curves, as with flight paths, since they should take the shortest real world surface path: a geodesic (a great circle segment).
Is this possible?
Would I need to interpolate the points along the geodesic (how?) and plot a bunch of line segments, or is there an easier way? Is there something built in I can't find, or a library for it?
Looking at OL3's Flight Animation Example, it appears to be possible using the arc.js plugin: “A great circle arc between two airports is calculated using arc.js and then the flight paths are animated with postcompose. The flight data is provided by OpenFlights (a simplified data set from the Mapbox.js documentation is used).”

Analyzing a hand-drawn flowchart diagram

I'm trying to detect objects and text in a hand-drawn diagram.
My goal is to be able to "parse" something like this into an object structure for further processing.
My first aim is to detect text, lines and boxes (arrows etc... are not important (for now ;))
I can do Dilatation, Erosion, Otsu thresholding, Invert etc and easily get to something like this
What I need some guidance for are the next steps.
I've have several ideas:
Contour Analysis
OCR using UNIPEN
Edge detection
Contour Analysis
I've been reading about "Contour Analysis for Image Recognition in C#" on CodeProject which could be a great way to recognize boxes etc. but my issue is that the boxes are connected and therefore do not form separate objects to match with a template.
Therefore I need some advises IF this is a feasible way to go.
OCR using UNIPEN
I would like to use UNIPEN (see "Large pattern recognition system using multi neural networks" on CodeProject) to recognize handwritten letters and then "remove" them from the image leaving only the boxes and lines.
Edge detection
Another way could be to detect all lines and corners and in that way infer the boxes and lines that the image consist of. In that case ideas on how to straighten the lines and find the 90 degree corners would be helpful.
Generally, I think I just need some pointers on which strategy to apply, not code samples (though it would be great ;))
I will try to answer about the contour analysis and the lines between them.
If you need to turn the interconnected boxes into separate objects, that can be achieved easily enough:
close the gaps in the box edges with morphological closing
perform connected components labeling and look for compact objects (e.g. objects whose area is close to the area of their bounding box)
You will get the insides of the boxes. These can be elliptical or rectangular or any shape you may find in common diagrams, the contour analysis can tell you which. A problem may arise for enclosed background areas (e.g. the space between the ABC links in your example diagram). You might eliminate these on the criterion that their bounding box overlaps with multiple other objects' bounding boxes.
Now find line segments with HoughLinesP. If a segment finishes or starts within a certain distance of the edge of one of the objects, you can assume it is connected to that object.
As an added touch you could try to detect arrow ends on either side by checking the width profile of the line segments in a neighbourhood of their endpoints.
It is an interesting problem, I will try to remember it and give it to my students to grit their teeth on.

How to detect PizzaMarker

did somebody tried to find a pizzamarker like this one with "only" OpenCV so far?
I was trying to detect this one but couldn't get good results so far. I do not know where this marker is in picture (no ROI is possible), the marker will be somewhere in the room (different ligthning effects) and not faceing orthoonal towards us. What I want - the corners and later the orientation of this marker extracted with the corners but first of all only the 5Corners. (up, down, left, right, center)
I was trying so far: threshold, noiseclearing, find contours but nothing realy helped for a good result. Chessboards or square markers are normaly found because of their (parallel) lines- i guess this can't help me here...
What is an easy way to find those markers?
How would you start?
Use other colorformat like HSV?
A step-by-step idea or tutorial would be realy helpfull. Cause i couldn't find tuts at the net. Maybe this marker isn't called pizzamarker -> does somebody knows the real name?
thx for help
First - thank you for all of your help.
It seems that several methods are usefull. Some more or less time expansive.
For me it was the easiest with a template matching but not with the same marker.
I used only a small part of it...
this can be found 5 times(4 times negative and one positive) in this new marker:
now I use only the 4 most negatives Points and the most positive and got my 5 points that I finaly wanted. To make this more sure, I check if they are close to each other and will do a cornerSubPix().
If you need something which can operate in real-time I'd go down the edge detection route and look for intersecting lines like these guys did. Seems fast and robust to lighting changes.
Read up on the Hough Line Transform in openCV to get started.
Addendum:
Black to White is the strongest edge you can have. If you create a gradient image and use the strongest edges found in the scene (via histogram or other) you will be able to limit the detection to only the black/white edges. Look for intersections. This should give you a small number of center points to apply Hough ellipse detection (or alternate) to. You could rotate in a template as a further check if you wish.
BTW.. OpenCV has Edge Detection, Hough transform and FitEllipse if you do go down this route.
actually this 'pizza' pattern is one of the building blocks of the haar featured used in the
Viola–Jones object detection framework.
So what I would do is compute the summed area table, or integral image using cv::integral(img) and then run exhaustive search for this pattern, on various scales (size dependant).
In each window you are using only 9 points (top-left, top-center, ..., bottom left).
You can train and use cvHaarDetectObjects to detect the marker using VJ.
Probably not the fastest method but it should work.
You can find more info on object detection methods using OpenCV here: http://opencv.willowgarage.com/documentation/object_detection.html

square detection, image processing

I am looking for an efficient way to detect the small boxes around the numbers (see images)?
I already tried to use hough transformation with no success. Any ideas? I need some hints! I am using opencv...
For inspiration, you can have a look at the
Matlab video sudoku solver demo and explanation
Sudoku Grab, an Iphone App, whose author explains the computer vision part on his blog
Alternatively, if you are always hunting for the same grid you could deploy something like this:
Make a perfect artificial template of the grid and detect or save all coordinates from all corners.
In the target image, do the same thing, for example with Harris points. Be creative, you might also be able to use the distinct triangles that can be found in your images.
Using the coordinates from the template and the found harris points, determine the affine transformation x = Ax' between the template and the target image. That transformation can then be used to map the template grid onto the target image. At the very least this will give you some prior information to help guide further segmentation.
The gist of the idea and examples of the estimation of affine matrix A can be found on the site of Zissermans book Multiple View Geometry in Computer Vision and Peter Kovesi
I'd start by trying to detect the rectangular boundary of the overall sheet, then applying a perspective transform to make it truly rectangular. Crop that portion of the image out. If possible, then try to make the alternating white and grey sub-rectangles have an equal background brightness - maybe try adaptive histogram equalization.
Then the Hough transform might perform better. Alternatively, you could then take an approach that's broadly similar to this demonstration by Robert Bemis on MATLAB Central (it's analysing a DNA microarray image rather than Lotto cards, but it's essentially finding bounding boxes of items arranged in a grid). At a high level, the approach is to calculate the autocorrelation along columns and rows of pixels to detect the periodicity of the items in the grid, and use that to impose a bounding box on each item.
Sorry the above advice is mostly MATLAB-based; I'm afraid I'm not an opencv user, but hopefully it will give you some ideas at least.

Resources