How to disable omp in Torch nn package? - lua

Specifically I would like nn.LogSoftMax to not use omp when the size of the input tensor is small. I have a small script to test the run time.
require 'nn'
my_lsm = function(t)
o = torch.zeros((#t)[1])
sum = 0.0
for i = 1,(#t)[1] do
o[i] = torch.exp(t[i])
sum = sum + o[i]
end
o = o / sum
return torch.log(o)
end
ii=torch.randn(arg[1])
m=nn.LogSoftMax()
timer = torch.Timer()
timer:stop()
timer:reset()
timer:resume()
my_lsm(ii)
print(timer:time().real)
timer:stop()
timer:reset()
timer:resume()
m:forward(ii)
print(timer:time().real)
If arg[1] is 10, then my basic log softmax function run much faster:
0.00021696090698242
0.033425092697144
But once arg[1] is 10,000,000, omp really helps a lot:
29.561321973801
0.11547803878784
So I suspect that omp overhead is very high. If my code has to call log softmax several times with small inputs (says tensor size is only 3), it will cost too much time. Is there a way to manually disable omp usage in some cases (but not always)?

Is there a way to manually disable omp usage in some cases (but not always)?
If you really want to do that one possibility is to use torch.setnumthreads and torch.getnumthreads like that:
local nth = torch.getnumthreads()
torch.setnumthreads(1)
-- do something
torch.setnumthreads(nth)
So you can monkey-patch nn.LogSoftMax as follow:
nn.LogSoftMax.updateOutput = function(self, input)
local nth = torch.getnumthreads()
torch.setnumthreads(1)
local out = input.nn.LogSoftMax_updateOutput(self, input)
torch.setnumthreads(nth)
return out
end

Related

no method matching logpdf when sampling from uniform distribution

I am trying to use reinforcement learning in julia to teach a car that is constantly being accelerated backwards (but with a positive initial velocity) to apply brakes so that it gets as close to a target distance as possible before moving backwards.
To do this, I am making use of POMDPs.jl and crux.jl which has many solvers (I'm using DQN). I will list what I believe to be the relevant parts of the script first, and then more of it towards the end.
To define the MDP, I set the initial position, velocity, and force from the brakes as a uniform distribution over some values.
#with_kw struct SliderMDP <: MDP{Array{Float32}, Array{Float32}}
x0 = Distributions.Uniform(0., 80.)# Distribution to sample initial position
v0 = Distributions.Uniform(0., 25.) # Distribution to sample initial velocity
d0 = Distributions.Uniform(0., 2.) # Distribution to sample brake force
...
end
My state holds the values of (position, velocity, brake force), and the initial state is given as:
function POMDPs.initialstate(mdp::SliderMDP)
ImplicitDistribution((rng) -> Float32.([rand(rng, mdp.x0), rand(rng, mdp.v0), rand(rng, mdp.d0)]))
end
Then, I set up my DQN solver using crux.jl and called a function to solve for the policy
solver_dqn = DQN(π=Q_network(), S=s, N=30000)
policy_dqn = solve(solver_dqn, mdp)
calling solve() gives me the error MethodError: no method matching logpdf(::Distributions.Categorical{Float64, Vector{Float64}}, ::Nothing). I am quite sure that this comes from the initial state sampling, but I am not sure why or how to fix it. I have only been learning RL from various books and online lectures for a very short time, so any help regarding the error or my the model I set up (or anything else I'm oblivious to) would be appreciated.
More comprehensive code:
Packages:
using POMDPs
using POMDPModelTools
using POMDPPolicies
using POMDPSimulators
using Parameters
using Random
using Crux
using Flux
using Distributions
Rest of it:
#with_kw struct SliderMDP <: MDP{Array{Float32}, Array{Float32}}
x0 = Distributions.Uniform(0., 80.)# Distribution to sample initial position
v0 = Distributions.Uniform(0., 25.) # Distribution to sample initial velocity
d0 = Distributions.Uniform(0., 2.) # Distribution to sample brake force
m::Float64 = 1.
tension::Float64 = 3.
dmax::Float64 = 2.
target::Float64 = 80.
dt::Float64 = .05
γ::Float32 = 1.
actions::Vector{Float64} = [-.1, 0., .1]
end
function POMDPs.gen(env::SliderMDP, s, a, rng::AbstractRNG = Random.GLOBAL_RNG)
x, ẋ, d = s
if x >= env.target
a = .1
end
if d+a >= env.dmax || d+a <= 0
a = 0.
end
force = (d + env.tension) * -1
ẍ = force/env.m
# Simulation
x_ = x + env.dt * ẋ
ẋ_ = ẋ + env.dt * ẍ
d_ = d + a
sp = vcat(x_, ẋ_, d_)
reward = abs(env.target - x) * -1
return (sp=sp, r=reward)
end
function POMDPs.initialstate(mdp::SliderMDP)
ImplicitDistribution((rng) -> Float32.([rand(rng, mdp.x0), rand(rng, mdp.v0), rand(rng, mdp.d0)]))
end
POMDPs.isterminal(mdp::SliderMDP, s) = s[2] <= 0
POMDPs.discount(mdp::SliderMDP) = mdp.γ
mdp = SliderMDP();
s = state_space(mdp); # Using Crux.jl
function Q_network()
layer1 = Dense(3, 64, relu)
layer2 = Dense(64, 64, relu)
layer3 = Dense(64, length(3))
return DiscreteNetwork(Chain(layer1, layer2, layer3), [-.1, 0, .1])
end
solver_dqn = DQN(π=Q_network(), S=s, N=30000) # Using Crux.jl
policy_dqn = solve(solver_dqn, mdp) # Error comes here
Stacktrace:
policy_dqn
MethodError: no method matching logpdf(::Distributions.Categorical{Float64, Vector{Float64}}, ::Nothing)
Closest candidates are:
logpdf(::Distributions.DiscreteNonParametric, !Matched::Real) at C:\Users\name\.julia\packages\Distributions\Xrm9e\src\univariate\discrete\discretenonparametric.jl:106
logpdf(::Distributions.UnivariateDistribution{S} where S<:Distributions.ValueSupport, !Matched::AbstractArray) at deprecated.jl:70
logpdf(!Matched::POMDPPolicies.PlaybackPolicy, ::Any) at C:\Users\name\.julia\packages\POMDPPolicies\wMOK3\src\playback.jl:34
...
logpdf(::Crux.ObjectCategorical, ::Float32)#utils.jl:16
logpdf(::Crux.DistributionPolicy, ::Vector{Float64}, ::Float32)#policies.jl:305
var"#exploration#133"(::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, ::typeof(Crux.exploration), ::Crux.DistributionPolicy, ::Vector{Float64})#policies.jl:302
exploration#policies.jl:297[inlined]
action(::Crux.DistributionPolicy, ::Vector{Float64})#policies.jl:294
var"#exploration#136"(::Crux.DiscreteNetwork, ::Int64, ::typeof(Crux.exploration), ::Crux.MixedPolicy, ::Vector{Float64})#policies.jl:326
var"#step!#173"(::Bool, ::Int64, ::typeof(Crux.step!), ::Dict{Symbol, Array}, ::Int64, ::Crux.Sampler{Main.workspace#2.SliderMDP, Vector{Float32}, Crux.DiscreteNetwork, Crux.ContinuousSpace{Tuple{Int64}}, Crux.DiscreteSpace})#sampler.jl:55
var"#steps!#174"(::Int64, ::Bool, ::Int64, ::Bool, ::Bool, ::Bool, ::typeof(Crux.steps!), ::Crux.Sampler{Main.workspace#2.SliderMDP, Vector{Float32}, Crux.DiscreteNetwork, Crux.ContinuousSpace{Tuple{Int64}}, Crux.DiscreteSpace})#sampler.jl:108
var"#fillto!#177"(::Int64, ::Bool, ::typeof(Crux.fillto!), ::Crux.ExperienceBuffer{Array}, ::Crux.Sampler{Main.workspace#2.SliderMDP, Vector{Float32}, Crux.DiscreteNetwork, Crux.ContinuousSpace{Tuple{Int64}}, Crux.DiscreteSpace}, ::Int64)#sampler.jl:156
solve(::Crux.OffPolicySolver, ::Main.workspace#2.SliderMDP)#off_policy.jl:86
top-level scope#Local: 1[inlined]
Short answer:
Change your output vector to Float32 i.e. Float32[-.1, 0, .1].
Long answer:
Crux creates a Distribution over your network's output values, and at some point (policies.jl:298) samples a random value from it. It then converts this value to a Float32. Later (utils.jl:15) it does a findfirst to find the index of this value in the original output array (stored as objs within the distribution), but because the original array is still Float64, this fails and returns a nothing. Hence the error.
I believe this (converting the sampled value but not the objs array and/or not using approximate equality check i.e. findfirst(isapprox(x), d.objs)) to be a bug in the package, and would encourage you to raise this as an issue on Github.

In Torch/Lua can I split/concat tensors as they flow through a network?

I'm a novice with Lua/Torch. I have an existing model that includes a max pooling layer. I want to take the input into that layer and split it into chunks, feeding each chunk into a new max pooling layer.
I have written a stand-alone Lua script that can split a tensor into two chunks and forward the two chunks into a network with two max-pooling layers.
But trying to integrate that back into the existing model I can't figure out how to amend the data "mid-flow", as it were, to do the tensor split. I've read the docs and can't see any function or example of architecture that somewhere along the line splits a tensor into two and forwards each part separately.
Any ideas? Thanks!
you want define a layer yourself.
The layer will be like below, if your layer input is one dimension:
CSplit, parent = torch.class('nn.CSplit', 'nn.Module')
function CSplit:__init(firstCount)
self.firstCount = firstCount
parent.__init(self)
end
function CSplit:updateOutput(input)
local inputSize = input:size()[1]
local firstCount = self.firstCount
local secondCount = inputSize - firstCount
local first = torch.Tensor(self.firstCount)
local second = torch.Tensor(secondCount)
for i=1, inputSize do
if i <= firstCount then
first[i] = input[i]
else
second[i - firstCount] = input[i]
end
end
self.output = {first, second}
return self.output
end
function CSplit:updateGradInput(input, gradOutput)
local inputSize = input:size()[1]
self.gradInput = torch.Tensor(input)
for i=1, inputSize do
if i <= self.firstCount then
self.gradInput[i] = gradOutput[1][i]
else
self.gradInput[i] = gradOutput[2][i-self.firstCount]
end
end
return self.gradInput
end
How to use it? you need to specify the first chunk size like the code below.
testNet = nn.CSplit(4)
input = torch.randn(10)
output = testNet:forward(input)
print(input)
print(output[1])
print(output[2])
testNet:backward(input, {torch.randn(4), torch.randn(6)})
you can see runnable iTorch notebook code here

Tensorflow LSTM PTB Example - Understanding forward and backward pass

Right now I am going through the tensorflow example on LSTMs where they use the PTB dataset to create an LSTM network capable of predicting the next word. I've spent a lot of time trying to understand the code, and have a good understanding for most of it however there is one function which I don't fully grasp:
def run_epoch(session, model, eval_op=None, verbose=False):
"""Runs the model on the given data."""
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"final_state": model.final_state,
}
if eval_op is not None:
fetches["eval_op"] = eval_op
for step in range(model.input.epoch_size):
feed_dict = {}
for i, (c, h) in enumerate(model.initial_state):
feed_dict[c] = state[i].c
feed_dict[h] = state[i].h
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
costs += cost
iters += model.input.num_steps
return np.exp(costs / iters)
My confusion is this: each time through the outerloop I believe we have processed batch_size * num_steps numbers of words, done the forward propagation and done the backward propagation. But, how in the next iteration, for example, do we know to start with the 36th word of each batch if num_steps = 35? I suspect it is some change in an attribute of the class model on each iteration but I cannot figure that out. Thanks for your help.

Real FFT output

I have implemented fft into at32ucb series ucontroller using kiss fft library and currently struggling with the output of the fft.
My intention is to analyse sound coming from piezo speaker.
Currently, the frequency of the sounder is 420Hz which I successfully got from the fft output (cross checked with an oscilloscope). However, the output frequency is just half of expected if I put function generator waveform into the system.
I suspect its the frequency bin calculation formula which I got wrong; currently using, fft_peak_magnitude_index*sampling frequency / fft_size.
My input is real and doing real fft. (output samples = N/2)
And also doing iir filtering and windowing before fft.
Any suggestion would be a great help!
// IIR filter calculation, n = 256 fft points
for (ctr=0; ctr<n; ctr++)
{
// filter calculation
y[ctr] = num_coef[0]*x[ctr];
y[ctr] += (num_coef[1]*x[ctr-1]) - (den_coef[1]*y[ctr-1]);
y[ctr] += (num_coef[2]*x[ctr-2]) - (den_coef[2]*y[ctr-2]);
y1[ctr] = y[ctr] - 510; //eliminate dc offset
// hamming window
hamming[ctr] = (0.54-((0.46) * cos(2*M_PI*ctr/n)));
window[ctr] = hamming[ctr]*y1[ctr];
fft_input[ctr].r = window[ctr];
fft_input[ctr].i = 0;
fft_output[ctr].r = 0;
fft_output[ctr].i = 0;
}
kiss_fftr_cfg fftConfig = kiss_fftr_alloc(n,0,NULL,NULL);
kiss_fftr(fftConfig, (kiss_fft_scalar * )fft_input, fft_output);
peak = 0;
freq_bin = 0;
for (ctr=0; ctr<n1; ctr++)
{
fft_mag[ctr] = 10*(sqrt((fft_output[ctr].r * fft_output[ctr].r) + (fft_output[ctr].i * fft_output[ctr].i)))/(0.5*n);
if(fft_mag[ctr] > peak)
{
peak = fft_mag[ctr];
freq_bin = ctr;
}
frequency = (freq_bin*(10989/n)); // 10989 is the sampling freq
//************************************
//Usart write
char filtResult[10];
//sprintf(filtResult, "%04d %04d %04d\n", (int)peak, (int)freq_bin, (int)frequency);
sprintf(filtResult, "%04d %04d %04d\n", (int)x[ctr], (int)fft_mag[ctr], (int)frequency);
char c;
char *ptr = &filtResult[0];
do
{
c = *ptr;
ptr++;
usart_bw_write_char(&AVR32_USART2, (int)c);
// sendByte(c);
} while (c != '\n');
}
The main problem is likely to be how you declared fft_input.
Based on your previous question, you are allocating fft_input as an array of kiss_fft_cpx. The function kiss_fftr on the other hand expect an array of scalar. By casting the input array into a kiss_fft_scalar with:
kiss_fftr(fftConfig, (kiss_fft_scalar * )fft_input, fft_output);
KissFFT essentially sees an array of real-valued data which contains zeros every second sample (what you filled in as imaginary parts). This is effectively an upsampled version (although without interpolation) of your original signal, i.e. a signal with effectively twice the sampling rate (which is not accounted for in your freq_bin to frequency conversion). To fix this, I suggest you pack your data into a kiss_fft_scalar array:
kiss_fft_scalar fft_input[n];
...
for (ctr=0; ctr<n; ctr++)
{
...
fft_input[ctr] = window[ctr];
...
}
kiss_fftr_cfg fftConfig = kiss_fftr_alloc(n,0,NULL,NULL);
kiss_fftr(fftConfig, fft_input, fft_output);
Note also that while looking for the peak magnitude, you probably are only interested in the final largest peak, instead of the running maximum. As such, you could limit the loop to only computing the peak (using freq_bin instead of ctr as an array index in the following sprintf statements if needed):
for (ctr=0; ctr<n1; ctr++)
{
fft_mag[ctr] = 10*(sqrt((fft_output[ctr].r * fft_output[ctr].r) + (fft_output[ctr].i * fft_output[ctr].i)))/(0.5*n);
if(fft_mag[ctr] > peak)
{
peak = fft_mag[ctr];
freq_bin = ctr;
}
} // close the loop here before computing "frequency"
Finally, when computing the frequency associated with the bin with the largest magnitude, you need the ensure the computation is done using floating point arithmetic. If as I suspect n is an integer, your formula would be performing the 10989/n factor using integer arithmetic resulting in truncation. This can be simply remedied with:
frequency = (freq_bin*(10989.0/n)); // 10989 is the sampling freq

Output function for fminunc in Octave

I am trying to implement the Regularized Logistic Regression Algorithm, using the fminunc() function in Octave for minimising the cost function. As generally advised, I would like to plot the cost function as a function of iterations of the fminunc() function. The function call looks as follows -
[theta, J, exit_flag] = ...
fminunc(#(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
with
options = optimset('GradObj', 'on', 'MaxIter', 400, 'OutputFcn',#showJ_history);
[showJ-history is the intended output function; I hope I have set the options parameter correctly].
But, I can't find good sources on the internet highlighting how to write this output function, specifically, what parameters are passed to it by the fminunc(), what it returns (if anything in particular required by the fminunc()).
Could someone please mention some helpful links or assist me in writing the output function.
I think you can refer to the source code. Consider also this example:
1;
function f = __rosenb (x)
# http://en.wikipedia.org/wiki/Rosenbrock_function
n = length (x);
f = sumsq (1 - x(1:n-1)) + 100 * sumsq (x(2:n) - x(1:n-1).^2);
endfunction
function bstop = showJ_history(x, optv, state)
plot(optv.iter, optv.fval, 'x')
# setting bstop to true stops optimization
bstop = false;
endfunction
opt = optimset('OutputFcn', #showJ_history);
figure()
xlabel("iteration")
ylabel("cost function")
hold on
[x, fval, info, out] = fminunc (#__rosenb, [5, -5], opt);

Resources