NLP - Word Representations - machine-learning

I am working on a Word representation algorithm, similar to Word2Vec and GloVe.I have been asked to make it more dynamic, such that new words could be added to the vocabulary,and new documents could be submitted to the program even after the representations (vectors) have been created.
The problem is, how do I know if my representation work? How do I know if it actually captures the meaning of each word? How do I compare my representation with other existing vector space models?
As of now, I am doing the following tests to check the quality of my word vectors:
Distance test:
Does the cosine distance between vectors reflect the semantic distance between words?
Analogy test:
Can the representation be used to solve problems like "King is to queen what man is to ________ ", (the answer should be woman)
Picking the odd one out:
Can the vectors be used to pick the odd word in a given list of words. If the input is {"cat","dog","phone"}, the output should be "phone"?
What are the other tests that I should do to check the quality of the vectors? What other tasks are word vectors expected to be capable of doing? Is there a benchmark for vector space models?

Your tests sound very reasonable — they are the usual evaluation tasks that are used in research papers to test the quality of word embeddings.
In addition, the website www.wordvectors.org can give you a good idea of how your vectors measure up. It allows you to upload your embeddings, generates plots, gives correlations with word pair similarity rankings, and compares your embeddings with pre-trained vectors from previous research. You can find a more detailed description in the accompanying paper.

Related

Word Embedding Model

I have been searching and attempting to implement a word embedding model to predict similarity between words. I have a dataset made up 3,550 company names, the idea is that the user can provide a new word (which would not be in the vocabulary) and calculate the similarity between the new name and existing ones.
During preprocessing I got rid of stop words and punctuation (hyphens, dots, commas, etc). In addition, I applied stemming and separated prefixes with the hope to get more precision. Then words such as BIOCHEMICAL ended up as BIO CHEMIC which is the word divided in two (prefix and stem word)
The average company name length is made up 3 words with the following frequency:
The tokens that are the result of preprocessing are sent to word2vec:
#window: Maximum distance between the current and predicted word within a sentence
#min_count: Ignores all words with total frequency lower than this.
#workers: Use these many worker threads to train the model
#sg: The training algorithm, either CBOW(0) or skip gram(1). Default is 0s
word2vec_model = Word2Vec(prepWords,size=300, window=2, min_count=1, workers=7, sg=1)
After the model included all the words in the vocab , the average sentence vector is calculated for each company name:
df['avg_vector']=df2.apply(lambda row : avg_sentence_vector(row, model=word2vec_model, num_features=300, index2word_set=set(word2vec_model.wv.index2word)).tolist())
Then, the vector is saved for further lookups:
##Saving name and vector values in file
df.to_csv('name-submission-vectors.csv',encoding='utf-8', index=False)
If a new company name is not included in the vocab after preprocessing (removing stop words and punctuation), then I proceed to create the model again and calculate the average sentence vector and save it again.
I have found this model is not working as expected. As an example, calculating the most similar words pet is getting the following results:
ms=word2vec_model.most_similar('pet')
('fastfood', 0.20879755914211273)
('hammer', 0.20450574159622192)
('allur', 0.20118337869644165)
('wright', 0.20001833140850067)
('daili', 0.1990675926208496)
('mgt', 0.1908089816570282)
('mcintosh', 0.18571510910987854)
('autopart', 0.1729743778705597)
('metamorphosi', 0.16965581476688385)
('doak', 0.16890916228294373)
In the dataset, I have words such as paws or petcare, but other words are creating relationships with pet word.
This is the distribution of the nearer words for pet:
On the other hand, when I used the GoogleNews-vectors-negative300.bin.gz, I could not add new words to the vocab, but the similarity between pet and words around was as expected:
ms=word2vec_model.most_similar('pet')
('pets', 0.771199643611908)
('Pet', 0.723974347114563)
('dog', 0.7164785265922546)
('puppy', 0.6972636580467224)
('cat', 0.6891531348228455)
('cats', 0.6719794869422913)
('pooch', 0.6579219102859497)
('Pets', 0.636363685131073)
('animal', 0.6338439583778381)
('dogs', 0.6224827170372009)
This is the distribution of the nearest words:
I would like to get your advice about the following:
Is this dataset appropriate to proceed with this model?
Is the length of the dataset enough to allow word2vec "learn" the relationships between the words?
What can I do to improve the model to make word2vec create relationships of the same type as GoogleNews where for instance word pet is correctly set among similar words?
Is it feasible to implement another alternative such as fasttext considering the nature of the current dataset?
Do you know any public dataset that can be used along with the current dataset to create those relationships?
Thanks
3500 texts (company names) of just ~3 words each is only around 10k total training words, with a much smaller vocabulary of unique words.
That's very, very small for word2vec & related algorithms, which rely on lots of data, and sufficiently-varied data, to train-up useful vector arrangements.
You may be able to squeeze some meaningful training from limited data by using far more training epochs than the default epochs=5, and far smaller vectors than the default size=100. With those sorts of adjustments, you may start to see more meaningful most_similar() results.
But, it's unclear that word2vec, and specifically word2vec in your averaging-of-a-name's-words comparisons, is matched to your end goals.
Word2vec needs lots of data, doesn't look at subword units, and can't say anything about word-tokens not seen during training. An average-of-many-word-vectors can often work as an easy baseline for comparing multiword texts, but might also dilute some word's influence compared to other methods.
Things to consider might include:
Word2vec-related algorithms like FastText that also learn vectors for subword units, and can thus bootstrap not-so-bad guess vectors for words not seen in training. (But, these are also data hungry, and to use on a small dataset you'd again want to reduce vector size, increase epochs, and additionally shrink the number of buckets used for subword learning.)
More sophisticated comparisons of multi-word texts, like "Word Mover's Distance". (That can be quite expensive on longer texts, but for names/titles of just a few words may be practical.)
Finding more data that's compatible with your aims for a stronger model. A larger database of company names might help. If you just want your analysis to understand English words/roots, more generic training texts might work too.
For many purposes, a mere lexicographic comparison - edit distances, count of shared character-n-grams – may be helpful too, though it won't detect all synonyms/semantically-similar words.
Word2vec does not generalize to unseen words.
It does not even work well for wards that are seen but rare. It really depends on having many many examples of word usage. Furthermore a you need enough context left and right, but you only use company names - these are too short. That is likely why your embeddings perform so poorly: too little data and too short texts.
Hence, it is the wrong approach for you. Retraining the model with the new company name is not enough - you still only have one data point. You may as well leave out unseen words, word2vec cannot work better than that even if you retrain.
If you only want to compute similarity between words, probably you don't need to insert new words in your vocabulary.
By eye, I think you can also use FastText without the need to stem the words. It also computes vectors for unknown words.
From FastText FAQ:
One of the key features of fastText word representation is its ability
to produce vectors for any words, even made-up ones. Indeed, fastText
word vectors are built from vectors of substrings of characters
contained in it. This allows to build vectors even for misspelled
words or concatenation of words.
FastText seems to be useful for your purpose.
For your task, you can follow FastText supervised tutorial.
If your corpus proves to be too small, you can build your model starting from availaible pretrained vectors (pretrainedVectors parameter).

Document classification using word vectors

While I was classifying and clustering the documents written in natural language, I came up with a question ...
As word2vec and glove, and or etc, vectorize the word in distributed spaces, I wonder if there are any method recommended or commonly used for document vectorization USING word vectors.
For example,
Document1: "If you chase two rabbits, you will lose them both."
can be vectorized as,
[0.1425, 0.2718, 0.8187, .... , 0.1011]
I know about the one also known as doc2vec, that this document has n dimensions just like word2vec. But this is 1 x n dimensions and I have been testing around to find out the limits of using doc2vec.
So, I want to know how other people apply the word vectors for applications with steady size.
Just stacking vectors with m words will be formed m x n dimensional vectors. In this case, the vector dimension will not be uniformed since dimension m will depends on the number of words in document.
If: [0.1018, ... , 0.8717]
you: [0.5182, ... , 0.8981]
..: [...]
m th word: [...]
And this form is not favorable form to run some machine learning algorithms such as CNN. What are the suggested methods to produce the document vectors in steady form using word vectors?
It would be great if it is provided with papers as well.
Thanks!
The most simple approach to get a fixed-size vector from a text, when all you have is word-vectors, to average all the word-vectors together. (The vectors could be weighted, but if they haven't been unit-length-normalized, their raw magnitudes from training are somewhat of an indicator of their strength-of-single-meaning – polysemous/ambiguous words tend to have vectors with smaller magnitudes.) It works OK for many purposes.
Word vectors can be specifically trained to be better at composing like this, if the training texts are already associated with known classes. Facebook's FastText in its 'classification' mode does this; the word-vectors are optimized as much or more for predicting output classes of the texts they appear in, as they are for predicting their context-window neighbors (classic word2vec).
The 'Paragraph Vector' technique, often called 'doc2vec', gives every training text a sort-of floating pseudoword, that contributes to every prediction, and thus winds up with a word-vector-like position that may represent that full text, rather than the individual words/contexts.
There are many further variants, including some based on deeper predictive networks (eg 'Skip-thought Vectors'), or slightly different prediction targets (eg neighboring sentences in 'fastSent'), or other genericizations that can even include a mixture of symbolic and numeric inputs/targets during training (an option in Facebook's StarSpace, which explores other entity-vectorization possibilities related to word-vectors and FastText-like classification needs).
If you don't need to collapse a text to fixed-size vectors, but just compare texts, there are also techniques like "Word Mover's Distance" which take the "bag of word-vectors" for one text, and another, and give a similarity score.

Features of vector form of sentences for opinion finding.

I want to find the opinion of a sentence either positive or negative. For example talk about only one sentence.
The play was awesome
If change it to vector form
[0,0,0,0]
After searching through the Bag of words
bad
naughty
awesome
The vector form becomes
[0,0,0,1]
Same for other sentences. Now I want to pass it to the machine learning algorithm for training it. How can I train the network using these multiple vectors? (for finding the opinion of unseen sentences) Obviously not! Because the input is fix in neural network. Is there any way? The above procedure is just my thinking. Kindly correct me if I am wrong. Thanks in advance.
Since your intuitive input format is "Sentence". Which is, indeed, a string of tokens with arbitrary length. Abstracting sentences as token series is not a good choice for many existing algorithms only works on determined format of inputs.
Hence, I suggest try using tokenizer on your entire training set. This will give you vectors of length of the dictionary, which is fixed for given training set.
Because when the length of sentences vary drastically, then size of the dictionary always keeps stable.
Then you can apply Neural Networks(or other algorithms) to the tokenized vectors.
However, vectors generated by tokenizer is extremely sparse because you only work on sentences rather than articles.
You can try LDA (supervised, not PCA), to reduce the dimension as well as amplify the difference.
That will keep the essential information of your training data as well as express your data at fixed size, while this "size" is not too large.
By the way, you may not have to label each word by its attitude since the opinion of a sentence also depends on other kind of words.
Simple arithmetics on number of opinion-expressing words many leave your model highly biased. Better label the sentences and leave the rest job to classifiers.
For the confusions
PCA and LDA are Dimensional Reduction techniques.
difference
Let's assume each tuple of sample is denoted as x (1-by-p vector).
p is too large, we don't like that.
Let's find a matrix A(p-by-k) in which k is pretty small.
So we get reduced_x = x*A, and most importantly, reduced_x must
be able to represent x's characters.
Given labeled data, LDA can provide proper A that can maximize
distance between reduced_x of different classes, and also minimize
the distance within identical classes.
In simple words: compress data, keep information.
When you've got
reduced_x, you can define training data: (reduced_x|y) where y is
0 or 1.

Am I using word-embeddings correctly?

Core question : Right way(s) of using word-embeddings to represent text ?
I am building sentiment classification application for tweets. Classify tweets as - negative, neutral and positive.
I am doing this using Keras on top of theano and using word-embeddings (google's word2vec or Stanfords GloVe).
To represent tweet text I have done as follows:
used a pre-trained model (such as word2vec-twitter model) [M] to map words to their embeddings.
Use the words in the text to query M to get corresponding vectors. So if the tweet (T) is "Hello world" and M gives vectors V1 and V2 for the words 'Hello' and 'World'.
The tweet T can then be represented (V) as either V1+V2 (add vectors) or V1V2 (concatinate vectors)[These are 2 different strategies] [Concatenation means juxtaposition, so if V1, V2 are d-dimension vectors, in my example T is 2d dimension vector]
Then, the tweet T is represented by vector V.
If I follow the above, then My Dataset is nothing but vectors (which are sum or concatenation of word vectors depending on which strategy I use).
I am training a deepnet such as FFN, LSTM on this dataset. But my results arent coming out to be great.
Is this the right way to use word-embeddings to represent text ? What are the other better ways ?
Your feedback/critique will be of immense help.
I think that, for your purpose, it is better to think about another way of composing those vectors. The literature on word embeddings contains examples of criticisms to these kinds of composition (I will edit the answer with the correct references as soon as I find them).
I would suggest you to consider also other possible approaches, for instance:
Using the single word vectors as input to your net (I do not know your architecture, but the LSTM is recurrent so it can deal with sequences of words).
Using a full paragraph embedding (i.e. https://cs.stanford.edu/~quocle/paragraph_vector.pdf)
Summing them doesn't make any sense to be honest, because on summing them you get another vector which i don't think represents the semantics of "Hello World" or may be it does but it won't surely hold true for longer sentences in general
Instead it would be better to feed them as sequence as in that way it at least preserves sequence in meaningful way which seems to fit more to your problem.
e.g A hates apple Vs Apple hates A this difference would be captured when you feed them as sequence into RNN but their summation will be same.
I hope you get my point!

Feature extraction from a single word

Usually one wants to get a feature from a text by using the bag of words approach, counting the words and calculate different measures, for example tf-idf values, like this: How to include words as numerical feature in classification
But my problem is different, I want to extract a feature vector from a single word. I want to know for example that potatoes and french fries are close to each other in the vector space, since they are both made of potatoes. I want to know that milk and cream also are close, hot and warm, stone and hard and so on.
What is this problem called? Can I learn the similarities and features of words by just looking at a large number documents?
I will not make the implementation in English, so I can't use databases.
hmm,feature extraction (e.g. tf-idf) on text data are based on statistics. On the other hand, you are looking for sense (semantics). Therefore no such a method like tf-idef will work for you.
In NLP exists 3 basic levels:
morphological analyses
syntactic analyses
semantic analyses
(higher number represents bigger problems :)). Morphology is known for majority languages. Syntactic analyses is a bigger problem (it deals with things like what is verb, noun in some sentence,...). Semantic analyses has the most challenges, since it deals with meaning which is quite difficult to represent in machines, have many exceptions and are language-specific.
As far as I understand you want to know some relationships between words, this can be done via so-called dependency tree banks, (or just treebank): http://en.wikipedia.org/wiki/Treebank . It is a database/graph of sentences where a word can be considered as a node and relationship as arc. There is good treebank for czech language and for english there will be also some, but for many 'less-covered' languages it can be a problem to find one ...
user1506145,
Here is a simple idea that I have used in the past. Collect a large number of short documents like Wikipedia articles. Do a word count on each document. For the ith document and the jth word let
I = the number of documents,
J = the number of words,
x_ij = the number of times the jth word appears in the ith document, and
y_ij = ln( 1+ x_ij).
Let [U, D, V] = svd(Y) be the singular value decomposition of Y. So Y = U*D*transpose(V)), U is IxI, D is diagonal IxJ, and V is JxJ.
You can use (V_1j, V_2j, V_3j, V_4j) as a feature vector in R^4 for the jth word.
I am surprised the previous answers haven't mentioned word embedding. Word embedding algorithm can produce word vectors for each word a given dataset. These algorithms can nfer word vectors from the context. For instance, by looking at the context of the following sentences we can say that "clever" and "smart" is somehow related. Because the context is almost the same.
He is a clever guy
He is a smart guy
A co-occurrence matrix can be constructed to do this. However, it is too inefficient. A famous technique designed for this purpose is called Word2Vec. It can be studied from the following papers.
https://arxiv.org/pdf/1411.2738.pdf
https://arxiv.org/pdf/1402.3722.pdf
I have been using it for Swedish. It is quite effective in detecting similar words and completely unsupervised.
A package could be find in gensim and tensorflow.

Resources