I would like to learn image segmentation using SLIC algorithm in Matlab. After implementing that algorithm on some images, I saw that some lines of segments are dashed. However, I can obtain straight lines on a different image with same parameters. Required superpixel parameter is 500. Compactness factor is 20. What is the correct interpretation of that difference?
Every image is different and algorithms often need to be tweaked on an image by image basis. Just try doing a simple binary threshold conversion
%matlab code
imshow(my_im < 128)
with different my_im images. you will see they are all different. One of the most difficult parts of computer-vision (which includes image segmentation) is finding ways to tune the parameters automatically without trial and error type approaches
Related
I'm trying to develop algorithm, which returns similarity score for two given black and white images: original one and its sketch, drawn by human:
All original images has the same style, but there is no any given limited set of them. Their content could be totally different.
I've tried few approaches, but none of them was successful yet:
OpenCV template matching
OpenCV matchTemplate is not able to calculate similarity score of images. It could only tells me count of matched pixels, and this value is usually quite low, because of not ideal proportions of human's sketch.
OpenCV feature matching
I've failed with this method, because I couldn't find good algorithms for extracting significant features from human's sketch. Algorithms from OpenCV's tutorials are good in extracting corners and blobs as features. But here, in sketches, we have a lot of strokes - each of them produces a lot of insignificant, junk features and leads to fuzzy results.
Neural Network Classification
Also I took a look at neural networks - they are good in image classification, but also they need train sets for each of classes, and this part is impossible, because we have an unlimited set of possible images.
Which methods and algorithms would you use for this kind of task?
METHOD 1
Cosine similarity gives a similarity score ranging between (0 - 1).
I first converted the images to gray scale and binarized them. I cropped the original image to half the size and excluded the text as shown below:
I then converted the image arrays to 1D arrays using flatten(). I used the following to compute cosine similarity:
from scipy import spatial
result = spatial.distance.cosine(im2, im1)
print result
The result I obtained was 0.999999988431, meaning the images are similar to each other by this score.
EDIT
METHOD 2
I had the time to check out another solution. I figured out that OpenCV's cv2.matchTemplate() function performs the same job.
I f you check out THIS DOCUMENTATION PAGE you will come across the different parameters used.
I used the cv2.TM_SQDIFF_NORMED parameter (which gives the normalized square difference between the two images).
res = cv2.matchTemplate(th1, th2, cv2.TM_SQDIFF_NORMED)
print 1 - res
For the given images I obtained a similarity score of: 0.89689457
The situation is kind of unique from anything I have been able to find asked already, and is as follows: If I took a photo of two similar images, I'd like to be able to highlight the differing features in the two images. For example the following two halves of a children's spot the difference game:
The differences in the images will be bits missing/added and/or colour change, and the type of differences which would be easily detectable from the original image files by doing nothing cleverer than a pixel-by-pixel comparison. However the fact that they're subject to the fluctuations of light and imprecision of photography, I'll need a far more lenient/clever algorithm.
As you can see, the images won't necessarily line up perfectly if overlaid.
This question is tagged language-agnostic as I expect answers that point me towards relevant algorithms, however I'd also be interested in current implementations if they exist, particularly in Java, Ruby, or C.
The following approach should work. All of these functionalities are available in OpenCV. Take a look at this example for computing homographies.
Detect keypoints in the two images using a corner detector.
Extract descriptors (SIFT/SURF) for the keypoints.
Match the keypoints and compute a homography using RANSAC, that aligns the second image to the first.
Apply the homography to the second image, so that it is aligned with the first.
Now simply compute the pixel-wise difference between the two images, and the difference image will highlight everything that has changed from the first to the second.
My general approach would be to use an optical flow to align both images and perform a pixel by pixel comparison once they are aligned.
However, for the specifics, standard optical flows (OpenCV etc.) are likely to fail if the two images differ significantly like in your case. If that indeed fails, there are recent optical flow techniques that are supposed to work even if the images are drastically different. For instance, you might want to look at the paper about SIFT flows by Ce Liu et al that addresses this problem with sparse correspondences.
I have images of mosquitos similar to these ones and I would like to automatically circle around the head of each mosquito in the images. They are obviously in different orientations and there are random number of them in different images. some error is fine. Any ideas of algorithms to do this?
This problem resembles a face detection problem, so you could try a naïve approach first and refine it if necessary.
First you would need to recreate your training set. For this you would like to extract small images with examples of what is a mosquito head or what is not.
Then you can use those images to train a classification algorithm, be careful to have a balanced training set, since if your data is skewed to one class it would hit the performance of the algorithm. Since images are 2D and algorithms usually just take 1D arrays as input, you will need to arrange your images to that format as well (for instance: http://en.wikipedia.org/wiki/Row-major_order).
I normally use support vector machines, but other algorithms such as logistic regression could make the trick too. If you decide to use support vector machines I strongly recommend you to check libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/), since it's a very mature library with bindings to several programming languages. Also they have a very easy to follow guide targeted to beginners (http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf).
If you have enough data, you should be able to avoid tolerance to orientation. If you don't have enough data, then you could create more training rows with some samples rotated, so you would have a more representative training set.
As for the prediction what you could do is given an image, cut it using a grid where each cell has the same dimension that the ones you used on your training set. Then you pass each of this image to the classifier and mark those squares where the classifier gave you a positive output. If you really need circles then take the center of the given square and the radius would be the half of the square side size (sorry for stating the obvious).
So after you do this you might have problems with sizes (some mosquitos might appear closer to the camera than others) , since we are not trained the algorithm to be tolerant to scale. Moreover, even with all mosquitos in the same scale, we still might miss some of them just because they didn't fit in our grid perfectly. To address this, we will need to repeat this procedure (grid cut and predict) rescaling the given image to different sizes. How many sizes? well here you would have to determine that through experimentation.
This approach is sensitive to the size of the "window" that you are using, that is also something I would recommend you to experiment with.
There are some research may be useful:
A Multistep Approach for Shape Similarity Search in Image Databases
Representation and Detection of Shapes in Images
From the pictures you provided this seems to be an extremely hard image recognition problem, and I doubt you will get anywhere near acceptable recognition rates.
I would recommend a simpler approach:
First, if you have any control over the images, separate the mosquitoes before taking the picture, and use a white unmarked underground, perhaps even something illuminated from below. This will make separating the mosquitoes much easier.
Then threshold the image. For example here i did a quick try taking the red channel, then substracting the blue channel*5, then applying a threshold of 80:
Use morphological dilation and erosion to get rid of the small leg structures.
Identify blobs of the right size to be moquitoes by Connected Component Labeling. If a blob is large enough to be two mosquitoes, cut it out, and apply some more dilation/erosion to it.
Once you have a single blob like this
you can find the direction of the body using Principal Component Analysis. The head should be the part of the body where the cross-section is the thickest.
We as human, could recognize these two images as same image :
In computer, it will be easy to recognize these two image if they are in the same size, so we have to make Preprocessing stage or step before recognize it, like scaling, but if we look deeply to scaling process, we will know that it's not an efficient way.
Now, could you help me to find some way to convert images into objects that doesn't deal with size or pixel location, to be input for recognition method ?
Thanks advance.
I have several ideas:
Let the image have several color thresholds. This way you get large
areas of the same color. The shapes of those areas can be traced with
curves which are math. If you do this for the larger and the smaller
one and see if the curves match.
Try to define key spots in the area. I don't know for sure how
this works but you can look up face detection algoritms. In such
an algoritm there is a math equation for how a face should look.
If you define enough object in such algorithms you can define
multiple objects in the images to see if the object match on the
same spots.
And you could see if the predator algorithm can accept images
of multiple size. If so your problem is solved.
It looks like you assume that human's brain recognize image in computationally effective way, which is rather not true. this algorithm is so complicated that we did not find it. It also takes a large part of your brain to deal with visual data.
When it comes to software there are some scale(or affine) invariant algorithms. One of such algorithms is LeNet 5 neural network.
What are the ways in which to quantify the texture of a portion of an image? I'm trying to detect areas that are similar in texture in an image, sort of a measure of "how closely similar are they?"
So the question is what information about the image (edge, pixel value, gradient etc.) can be taken as containing its texture information.
Please note that this is not based on template matching.
Wikipedia didn't give much details on actually implementing any of the texture analyses.
Do you want to find two distinct areas in the image that looks the same (same texture) or match a texture in one image to another?
The second is harder due to different radiometry.
Here is a basic scheme of how to measure similarity of areas.
You write a function which as input gets an area in the image and calculates scalar value. Like average brightness. This scalar is called a feature
You write more such functions to obtain about 8 - 30 features. which form together a vector which encodes information about the area in the image
Calculate such vector to both areas that you want to compare
Define similarity function which takes two vectors and output how much they are alike.
You need to focus on steps 2 and 4.
Step 2.: Use the following features: std() of brightness, some kind of corner detector, entropy filter, histogram of edges orientation, histogram of FFT frequencies (x and y directions). Use color information if available.
Step 4. You can use cosine simmilarity, min-max or weighted cosine.
After you implement about 4-6 such features and a similarity function start to run tests. Look at the results and try to understand why or where it doesnt work. Then add a specific feature to cover that topic.
For example if you see that texture with big blobs is regarded as simmilar to texture with tiny blobs then add morphological filter calculated densitiy of objects with size > 20sq pixels.
Iterate the process of identifying problem-design specific feature about 5 times and you will start to get very good results.
I'd suggest to use wavelet analysis. Wavelets are localized in both time and frequency and give a better signal representation using multiresolution analysis than FT does.
Thre is a paper explaining a wavelete approach for texture description. There is also a comparison method.
You might need to slightly modify an algorithm to process images of arbitrary shape.
An interesting approach for this, is to use the Local Binary Patterns.
Here is an basic example and some explanations : http://hanzratech.in/2015/05/30/local-binary-patterns.html
See that method as one of the many different ways to get features from your pictures. It corresponds to the 2nd step of DanielHsH's method.