subset without using brute-force - ios

I'm trying to find a generic solution to the next problem without using brute force because is for an iOS app.
Let's say I have 3 arrays of elements.
arr_a = [1,1,2,3,3,3,2,1,2];
arr_b = [2,2,2,2,3,2,2];
arr_c = [3,2,2,2,1,2,2,3,2,2,3];
These arrays will only contain elements 1, 2 or 3. As you noticed, they might have all type of elements or just some of them.
Assuming there's a solution, how would you randomly pick X, Y and Z values from the arrays, being X the amount of 1s, Y the amount of 2s and Z the amount of 3s?

Related

maps,filter,folds and more? Do we really need these in Erlang?

Maps, filters, folds and more : http://learnyousomeerlang.com/higher-order-functions#maps-filters-folds
The more I read ,the more i get confused.
Can any body help simplify these concepts?
I am not able to understand the significance of these concepts.In what use cases will these be needed?
I think it is majorly because of the syntax,diff to find the flow.
The concepts of mapping, filtering and folding prevalent in functional programming actually are simplifications - or stereotypes - of different operations you perform on collections of data. In imperative languages you usually do these operations with loops.
Let's take map for an example. These three loops all take a sequence of elements and return a sequence of squares of the elements:
// C - a lot of bookkeeping
int data[] = {1,2,3,4,5};
int squares_1_to_5[sizeof(data) / sizeof(data[0])];
for (int i = 0; i < sizeof(data) / sizeof(data[0]); ++i)
squares_1_to_5[i] = data[i] * data[i];
// C++11 - less bookkeeping, still not obvious
std::vec<int> data{1,2,3,4,5};
std::vec<int> squares_1_to_5;
for (auto i = begin(data); i < end(data); i++)
squares_1_to_5.push_back((*i) * (*i));
// Python - quite readable, though still not obvious
data = [1,2,3,4,5]
squares_1_to_5 = []
for x in data:
squares_1_to_5.append(x * x)
The property of a map is that it takes a collection of elements and returns the same number of somehow modified elements. No more, no less. Is it obvious at first sight in the above snippets? No, at least not until we read loop bodies. What if there were some ifs inside the loops? Let's take the last example and modify it a bit:
data = [1,2,3,4,5]
squares_1_to_5 = []
for x in data:
if x % 2 == 0:
squares_1_to_5.append(x * x)
This is no longer a map, though it's not obvious before reading the body of the loop. It's not clearly visible that the resulting collection might have less elements (maybe none?) than the input collection.
We filtered the input collection, performing the action only on some elements from the input. This loop is actually a map combined with a filter.
Tackling this in C would be even more noisy due to allocation details (how much space to allocate for the output array?) - the core idea of the operation on data would be drowned in all the bookkeeping.
A fold is the most generic one, where the result doesn't have to contain any of the input elements, but somehow depends on (possibly only some of) them.
Let's rewrite the first Python loop in Erlang:
lists:map(fun (E) -> E * E end, [1,2,3,4,5]).
It's explicit. We see a map, so we know that this call will return a list as long as the input.
And the second one:
lists:map(fun (E) -> E * E end,
lists:filter(fun (E) when E rem 2 == 0 -> true;
(_) -> false end,
[1,2,3,4,5])).
Again, filter will return a list at most as long as the input, map will modify each element in some way.
The latter of the Erlang examples also shows another useful property - the ability to compose maps, filters and folds to express more complicated data transformations. It's not possible with imperative loops.
They are used in almost every application, because they abstract different kinds of iteration over lists.
map is used to transform one list into another. Lets say, you have list of key value tuples and you want just the keys. You could write:
keys([]) -> [];
keys([{Key, _Value} | T]) ->
[Key | keys(T)].
Then you want to have values:
values([]) -> [];
values([{_Key, Value} | T}]) ->
[Value | values(T)].
Or list of only third element of tuple:
third([]) -> [];
third([{_First, _Second, Third} | T]) ->
[Third | third(T)].
Can you see the pattern? The only difference is what you take from the element, so instead of repeating the code, you can simply write what you do for one element and use map.
Third = fun({_First, _Second, Third}) -> Third end,
map(Third, List).
This is much shorter and the shorter your code is, the less bugs it has. Simple as that.
You don't have to think about corner cases (what if the list is empty?) and for experienced developer it is much easier to read.
filter searches lists. You give it function, that takes element, if it returns true, the element will be on the returned list, if it returns false, the element will not be there. For example filter logged in users from list.
foldl and foldr are used, when you have to do additional bookkeeping while iterating over the list - for example summing all the elements or counting something.
The best explanations, I've found about those functions are in books about Lisp: "Structure and Interpretation of Computer Programs" and "On Lisp" Chapter 4..

Lua: understanding table array part and hash part

In section 4, Tables, in The Implementation of Lua 5.0 there is and example:
local t = {100, 200, 300, x = 9.3}
So we have t[4] == nil. If I write t[0] = 0, this will go to hash part.
If I write t[5] = 500 where it will go? Array part or hash part?
I would eager to hear answer for Lua 5.1, Lua 5.2 and LuaJIT 2 implementation if there is difference.
Contiguous integer keys starting from 1 always go in the array part.
Keys that are not positive integers always go in the hash part.
Other than that, it is unspecified, so you cannot predict where t[5] will be stored according to the spec (and it may or may not move between the two, for example if you create then delete t[4].)
LuaJIT 2 is slightly different - it will also store t[0] in the array part.
If you need it to be predictable (which is probably a design smell), stick to pure-array tables (contiguous integer keys starting from 1 - if you want to leave gap use a value of false instead of nil) or pure hash tables (avoid non-negative integer keys.)
Quoting from Implementation of Lua 5.0
The array part tries to store the values corresponding to integer keys from 1 to some limit n.Values corresponding to non-integer keys or to integer keys outside the array range are
stored in the hash part.
The index of the array part starts from 1, that's why t[0] = 0 will go to hash part.
The computed size of the array part is the largest nsuch that at least half the slots between 1 and n are in use (to avoid wasting space with sparse arrays) and there is at least one used slot between n/2+1 and n(to avoid a size n when n/2 would do).
According from this rule, in the example table:
local t = {100, 200, 300, x = 9.3}
The array part which holds 3 elements, may have a size of 3, 4 or 5. (EDIT: the size should be 4, see #dualed's comment.)
Assume that the array has a size of 4, when writing t[5] = 500, the array part can no longer hold the element t[5], what if the array part resize to 8? With a size of 8, the array part holds 4 elements, which is equal to (so, not less that) half of the array size. And the index from between n/2+1 and n, which in this case, is 5 to 8, has one element:t[5]. So an array size of 8 can accomplish the requirement. In this case, t[5] will go to the array part.

primefaces3.0 X-scale value change

I'm implementing line charts of primefaces(3.0) , I'm trying to change the value of X-scale
The values which I'm using are minX="0" maxX="38" , since primefaces linecharts is using jqplot , I added this script
<script>
$(function(){
widget_category.plot.axes.xaxis._tickInterval = 1;
widget_category.plot.axes.xaxis.numberTicks = 38;
});
</script>
But still the coordinates is coming in decimals.
I would like to mention that for Y scale, the values I used are minY="40" maxY="110" with style="height:1005px;" , As i figured out for a scale value , which can be 10 if height is defined as 1005px i.e. 5 * 14 = 70 which means Y scale is of 5 intervals , with 14 values and the line height is 1005 as 5*14*14 = 980 + 25 (which is top-margin added) 1005.
Though the same is not working out for X-Scale.
Any help would be helpful.
The arithmetic in your Y values are all multiplication operations on whole numbers, which will always result in a whole number. These whole numbers correlate perfectly to pixels.
Your X range however involves a multiplication of 1.0 and 38, one being an integer value and the other being determined as a float or double number. When performing a multiplication operation where one number is a float then the result value will always be a float, and standard floating point artithmetic rules will apply. This is why the coordinates are coming in decimals which don't equate perfectly to pixels.
When using Javascript you need to be careful of these kinds of pitfalls because it is not a strongly typed language like Java and it will not point things like this out to you.

Find all possible pairs between the subsets of N sets with Erlang

I have a set S. It contains N subsets (which in turn contain some sub-subsets of various lengths):
1. [[a,b],[c,d],[*]]
2. [[c],[d],[e,f],[*]]
3. [[d,e],[f],[f,*]]
N. ...
I also have a list L of 'unique' elements that are contained in the set S:
a, b, c, d, e, f, *
I need to find all possible combinations between each sub-subset from each subset so, that each resulting combination has exactly one element from the list L, but any number of occurrences of the element [*] (it is a wildcard element).
So, the result of the needed function working with the above mentioned set S should be (not 100% accurate):
- [a,b],[c],[d,e],[f];
- [a,b],[c],[*],[d,e],[f];
- [a,b],[c],[d,e],[f],[*];
- [a,b],[c],[d,e],[f,*],[*];
So, basically I need an algorithm that does the following:
take a sub-subset from the subset 1,
add one more sub-subset from the subset 2 maintaining the list of 'unique' elements acquired so far (the check on the 'unique' list is skipped if the sub-subset contains the * element);
Repeat 2 until N is reached.
In other words, I need to generate all possible 'chains' (it is pairs, if N == 2, and triples if N==3), but each 'chain' should contain exactly one element from the list L except the wildcard element * that can occur many times in each generated chain.
I know how to do this with N == 2 (it is a simple pair generation), but I do not know how to enhance the algorithm to work with arbitrary values for N.
Maybe Stirling numbers of the second kind could help here, but I do not know how to apply them to get the desired result.
Note: The type of data structure to be used here is not important for me.
Note: This question has grown out from my previous similar question.
These are some pointers (not a complete code) that can take you to right direction probably:
I don't think you will need some advanced data structures here (make use of erlang list comprehensions). You must also explore erlang sets and lists module. Since you are dealing with sets and list of sub-sets, they seems like an ideal fit.
Here is how things with list comprehensions will get solved easily for you: [{X,Y} || X <- [[c],[d],[e,f]], Y <- [[a,b],[c,d]]]. Here i am simply generating a list of {X,Y} 2-tuples but for your use case you will have to put real logic here (including your star case)
Further note that with list comprehensions, you can use output of one generator as input of a later generator e.g. [{X,Y} || X1 <- [[c],[d],[e,f]], X <- X1, Y1 <- [[a,b],[c,d]], Y <- Y1].
Also for removing duplicates from a list of things L = ["a", "b", "a"]., you can anytime simply do sets:to_list(sets:from_list(L)).
With above tools you can easily generate all possible chains and also enforce your logic as these chains get generated.

Constrained Sequence to Index Mapping

I'm puzzling over how to map a set of sequences to consecutive integers.
All the sequences follow this rule:
A_0 = 1
A_n >= 1
A_n <= max(A_0 .. A_n-1) + 1
I'm looking for a solution that will be able to, given such a sequence, compute a integer for doing a lookup into a table and given an index into the table, generate the sequence.
Example: for length 3, there are 5 the valid sequences. A fast function for doing the following map (preferably in both direction) would be a good solution
1,1,1 0
1,1,2 1
1,2,1 2
1,2,2 3
1,2,3 4
The point of the exercise is to get a packed table with a 1-1 mapping between valid sequences and cells.
The size of the set in bounded only by the number of unique sequences possible.
I don't know now what the length of the sequence will be but it will be a small, <12, constant known in advance.
I'll get to this sooner or later, but though I'd throw it out for the community to have "fun" with in the meantime.
these are different valid sequences
1,1,2,3,2,1,4
1,1,2,3,1,2,4
1,2,3,4,5,6,7
1,1,1,1,2,3,2
these are not
1,2,2,4
2,
1,1,2,3,5
Related to this
There is a natural sequence indexing, but no so easy to calculate.
Let look for A_n for n>0, since A_0 = 1.
Indexing is done in 2 steps.
Part 1:
Group sequences by places where A_n = max(A_0 .. A_n-1) + 1. Call these places steps.
On steps are consecutive numbers (2,3,4,5,...).
On non-step places we can put numbers from 1 to number of steps with index less than k.
Each group can be represent as binary string where 1 is step and 0 non-step. E.g. 001001010 means group with 112aa3b4c, a<=2, b<=3, c<=4. Because, groups are indexed with binary number there is natural indexing of groups. From 0 to 2^length - 1. Lets call value of group binary representation group order.
Part 2:
Index sequences inside a group. Since groups define step positions, only numbers on non-step positions are variable, and they are variable in defined ranges. With that it is easy to index sequence of given group inside that group, with lexicographical order of variable places.
It is easy to calculate number of sequences in one group. It is number of form 1^i_1 * 2^i_2 * 3^i_3 * ....
Combining:
This gives a 2 part key: <Steps, Group> this then needs to be mapped to the integers. To do that we have to find how many sequences are in groups that have order less than some value. For that, lets first find how many sequences are in groups of given length. That can be computed passing through all groups and summing number of sequences or similar with recurrence. Let T(l, n) be number of sequences of length l (A_0 is omitted ) where maximal value of first element can be n+1. Than holds:
T(l,n) = n*T(l-1,n) + T(l-1,n+1)
T(1,n) = n
Because l + n <= sequence length + 1 there are ~sequence_length^2/2 T(l,n) values, which can be easily calculated.
Next is to calculate number of sequences in groups of order less or equal than given value. That can be done with summing of T(l,n) values. E.g. number of sequences in groups with order <= 1001010 binary, is equal to
T(7,1) + # for 1000000
2^2 * T(4,2) + # for 001000
2^2 * 3 * T(2,3) # for 010
Optimizations:
This will give a mapping but the direct implementation for combining the key parts is >O(1) at best. On the other hand, the Steps portion of the key is small and by computing the range of Groups for each Steps value, a lookup table can reduce this to O(1).
I'm not 100% sure about upper formula, but it should be something like it.
With these remarks and recurrence it is possible to make functions sequence -> index and index -> sequence. But not so trivial :-)
I think hash with out sorting should be the thing.
As A0 always start with 0, may be I think we can think of the sequence as an number with base 12 and use its base 10 as the key for look up. ( Still not sure about this).
This is a python function which can do the job for you assuming you got these values stored in a file and you pass the lines to the function
def valid_lines(lines):
for line in lines:
line = line.split(",")
if line[0] == 1 and line[-1] and line[-1] <= max(line)+1:
yield line
lines = (line for line in open('/tmp/numbers.txt'))
for valid_line in valid_lines(lines):
print valid_line
Given the sequence, I would sort it, then use the hash of the sorted sequence as the index of the table.

Resources