How do I increase the size of EZAudio EZMicrophone? - ios

I would like to use the EZAudio framework to do realtime microphone signal FFT processing, along with some other processing in order to determine the peak frequency.
The problem is, the EZmicrophone class only appears to work on 512 samples, however, my signal requires an FFT of 8192 or even 16384 samples. There doesnt appear to be a way to change the buffer size in EZMicrophone, but I've read posts that recommend creating an array of my target size and appending the microphone buffer to it, then when it's full, do the FFT.
When I do this though, I get large chunks of memory with no data, or discontinuities between the segments of copied memory. I think it may have something to do with the timing or order in which the microphone delegate is being called or memory being overwritten in different threads...I'm grasping at straws here. Am I correct in assuming that this code is being executed everytime the microphone buffer is full of a new 512 samples?
Can anyone suggest what I may be doing wrong? I've been stuck on this for a long time.
Here is the post I've been using as a reference:
EZAudio: How do you separate the buffersize from the FFT window size(desire higher frequency bin resolution).
// Global variables which are bad but I'm just trying to make things work
float tempBuf[512];
float fftBuf[8192];
int samplesRemaining = 8192;
int samplestoCopy = 512;
int FFTLEN = 8192;
int fftBufIndex = 0;
#pragma mark - EZMicrophoneDelegate
-(void) microphone:(EZMicrophone *)microphone
hasAudioReceived:(float **)buffer
withBufferSize:(UInt32)bufferSize
withNumberOfChannels:(UInt32)numberOfChannels {
// Copy the microphone buffer so it wont be changed
memcpy(tempBuf, buffer[0], bufferSize);
dispatch_async(dispatch_get_main_queue(),^{
// Setup the FFT if it's not already setup
if( !_isFFTSetup ){
[self createFFTWithBufferSize:FFTLEN withAudioData:fftBuf];
_isFFTSetup = YES;
}
int samplesRemaining = FFTLEN;
memcpy(fftBuf+fftBufIndex, tempBuf, samplestoCopy*sizeof(float));
fftBufIndex += samplestoCopy;
samplesRemaining -= samplestoCopy;
if (fftBufIndex == FFTLEN)
{
fftBufIndex = 0;
samplesRemaining = FFTLEN;
[self updateFFTWithBufferSize:FFTLEN withAudioData:fftBuf];
}
});
}

You likely have threading issues because you are trying to do work in some blocks that takes much much longer than the time between audio callbacks. Your code is being called repeatedly before prior calls can say that they are done (with the FFT setup or clearing the FFT buffer).
Try doing the FFT setup outside the callback before starting the recording, only copy to a circular buffer or FIFO inside the callback, and do the FFT in code async to the callback (not locked in the same block as the circular buffer copy).

Related

STM32 - Reading I2S to record a .WAV file. Audio choppy, what is causing it?

I'm using an STM32 (STM32F446RE) to receive audio from two INMP441 mems microphone in an stereo setup via I2S protocol and record it into a .WAV on a micro SD card, using the HAL library.
I wrote the firmware that records audio into a .WAV with FreeRTOS. But the audio files that I record sound like Darth Vader. Here is a screenshot of the audio in audacity:
if you zoom in you can see a constant noise being inserted in between the real audio data:
I don't know what is causing this.
I have tried increasing the MessageQueue, but that doesnt seem to be the problem, the queue is kept at 0 most of the time. I've tried different frame sizes and sampling rates, changing the number of channels, using only one inmp441. All this without any success.
I proceed explaining the firmware.
Here is a block diagram of the architecture for the RTOS that I have implemented:
It consists of three tasks. The first one receives a command via UART (with interrupts) that signals to start or stop recording. the second one is simply an state machine that walks through the steps to write a .WAV.
Here the code for the WriteWavFileTask:
switch(audio_state)
{
case STATE_START_RECORDING:
sprintf(filename, "%saud_%03d.wav", SDPath, count++);
do
{
res = f_open(&file_ptr, filename, FA_CREATE_ALWAYS|FA_WRITE);
}
while(res != FR_OK);
res = fwrite_wav_header(&file_ptr, I2S_SAMPLE_FREQUENCY, I2S_FRAME, 2);
HAL_I2S_Receive_DMA(&hi2s2, aud_buf, READ_SIZE);
audio_state = STATE_RECORDING;
break;
case STATE_RECORDING:
osDelay(50);
break;
case STATE_STOP:
HAL_I2S_DMAStop(&hi2s2);
while(osMessageQueueGetCount(AudioQueueHandle)) osDelay(1000);
filesize = f_size(&file_ptr);
data_len = filesize - 44;
total_len = filesize - 8;
f_lseek(&file_ptr, 4);
f_write(&file_ptr, (uint8_t*)&total_len, 4, bw);
f_lseek(&file_ptr, 40);
f_write(&file_ptr, (uint8_t*)&data_len, 4, bw);
f_close(&file_ptr);
audio_state = STATE_IDLE;
break;
case STATE_IDLE:
osThreadSuspend(WAVHandle);
audio_state = STATE_START_RECORDING;
break;
default:
osDelay(50);
break;
Here are the macros used in the code for readability:
#define I2S_DATA_WORD_LENGTH (24) // industry-standard 24-bit I2S
#define I2S_FRAME (32) // bits per sample
#define READ_SIZE (128) // samples to read from I2S
#define WRITE_SIZE (READ_SIZE*I2S_FRAME/16) // half words to write
#define WRITE_SIZE_BYTES (WRITE_SIZE*2) // bytes to write
#define I2S_SAMPLE_FREQUENCY (16000) // sample frequency
The last task is the responsible for processing the buffer received via I2S. Here is the code:
void convert_endianness(uint32_t *array, uint16_t Size) {
for (int i = 0; i < Size; i++) {
array[i] = __REV(array[i]);
}
}
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
convert_endianness((uint32_t *)aud_buf, READ_SIZE);
osMessageQueuePut(AudioQueueHandle, aud_buf, 0L, 0);
HAL_I2S_Receive_DMA(hi2s, aud_buf, READ_SIZE);
}
void pvrWriteAudioTask(void *argument)
{
/* USER CODE BEGIN pvrWriteAudioTask */
static UINT *bw;
static uint16_t aud_ptr[WRITE_SIZE];
/* Infinite loop */
for(;;)
{
osMessageQueueGet(AudioQueueHandle, aud_ptr, 0L, osWaitForever);
res = f_write(&file_ptr, aud_ptr, WRITE_SIZE_BYTES, bw);
}
/* USER CODE END pvrWriteAudioTask */
}
This tasks reads from a queue an array of 256 uint16_t elements containing the raw audio data in PCM. f_write takes the Size parameter in number of bytes to write to the SD card, so 512 bytes. The I2S Receives 128 frames (for a 32 bit frame, 128 words).
The following is the configuration for the I2S and clocks:
Any help would be much appreciated!
Solution
As pmacfarlane pointed out, the problem was with the method used for buffering the audio data. The solution consisted of easing the overhead on the ISR and implementing a circular DMA for double buffering. Here is the code:
#define I2S_DATA_WORD_LENGTH (24) // industry-standard 24-bit I2S
#define I2S_FRAME (32) // bits per sample
#define READ_SIZE (128) // samples to read from I2S
#define BUFFER_SIZE (READ_SIZE*I2S_FRAME/16) // number of uint16_t elements expected
#define WRITE_SIZE_BYTES (BUFFER_SIZE*2) // bytes to write
#define I2S_SAMPLE_FREQUENCY (16000) // sample frequency
uint16_t aud_buf[2*BUFFER_SIZE]; // Double buffering
static volatile int16_t *BufPtr;
void convert_endianness(uint32_t *array, uint16_t Size) {
for (int i = 0; i < Size; i++) {
array[i] = __REV(array[i]);
}
}
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
BufPtr = aud_buf;
osSemaphoreRelease(RxAudioSemHandle);
}
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
BufPtr = &aud_buf[BUFFER_SIZE];
osSemaphoreRelease(RxAudioSemHandle);
}
void pvrWriteAudioTask(void *argument)
{
/* USER CODE BEGIN pvrWriteAudioTask */
static UINT *bw;
/* Infinite loop */
for(;;)
{
osSemaphoreAcquire(RxAudioSemHandle, osWaitForever);
convert_endianness((uint32_t *)BufPtr, READ_SIZE);
res = f_write(&file_ptr, BufPtr, WRITE_SIZE_BYTES, bw);
}
/* USER CODE END pvrWriteAudioTask */
}
Problems
I think the problem is your method of buffering the audio data - mainly in this function:
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
convert_endianness((uint32_t *)aud_buf, READ_SIZE);
osMessageQueuePut(AudioQueueHandle, aud_buf, 0L, 0);
HAL_I2S_Receive_DMA(hi2s, aud_buf, READ_SIZE);
}
The main problem is that you are re-using the same buffer each time. You have queued a message to save aud_buf to the SD-card, but you've also instructed the I2S to start DMAing data into that same buffer, before it has been saved. You'll end up saving some kind of mish-mash of "old" data and "new" data.
#Flexz pointed out that the message queue takes a copy of the data, so there is no issue about the I2S writing over the data that is being written to the SD-card. However, taking the copy (in an ISR) adds overhead, and delays the start of the new I2S DMA.
Another problem is that you are doing the endian conversion in this function (that is called from an ISR). This will block any other (lower priority) interrupts from being serviced while this happens, which is a bad thing in an embedded system. You should do the endian conversion in the task that reads from the queue. ISRs should be very short and do the minimum possible work (often just setting a flag, giving a semaphore, or adding something to a queue).
Lastly, while you are doing the endian conversion, what is happening to audio samples? The previous DMA has completed, and you haven't started a new one, so they will just be dropped on the floor.
Possible solution
You probably want to allocate a suitably big buffer, and configure your DMA to work in circular buffer mode. This means that once started, the DMA will continue forever (until you stop it), so you'll never drop any samples. There won't be any gap between one DMA finishing and a new one starting, since you never need to start a new one.
The DMA provides a "half-complete" interrupt, to say when it has filled half the buffer. So start the DMA, and when you get the half-complete interrupt, queue up the first half of the buffer to be saved. When you get the fully-complete interrupt, queue up the second half of the buffer to be saved. Rinse and repeat.
You might want to add some logic to detect if the interrupt happens before the previous save has completed, since the data will be overrun and possibly corrupted. Depending on the speed of the SD-card (and the sample rate), this may or may not be a problem.

Why are there time bubbles in my GPU timeline even when triple buffering?

I'm having trouble understanding why there are time bubbles on my GPU timeline when inspecting my app using PIX timing captures. Here is a picture of one of the time bubbles I'm talking about, highlighted in orange:
The timeline actually doesn't look at all how I expected. Since I am triple buffering, I would expect the GPU to be constantly working, without any time gaps between frames because the CPU is easily able to feed commands to the GPU before the GPU is done processing them. Instead, it doesn't seem like the CPU is 3 frames ahead. It seems like the CPU is constantly waiting for the GPU to be finished before it starts working on a new frame. So it makes me wonder if my triple buffering code is possibly broken? Here is my code for moving to the next frame:
void gpu_interface::next_frame()
{
UINT64 current_frame_fence_value = get_frame_resource()->fence_value;
UINT64 next_frame_fence_value = current_frame_fence_value + 1;
check_hr(swapchain->Present(0, 0));
check_hr(graphics_cmd_queue->Signal(fence.Get(), current_frame_fence_value));
{
// CPU and GPU frame-to-frame event.
PIXEndEvent(graphics_cmd_queue.Get());
PIXBeginEvent(graphics_cmd_queue.Get(), 0, "fence value: %d", next_frame_fence_value);
}
// Check if the next frame is ready to be rendered.
// The GPU must have reached at least up to the fence value of the frame we're about to render.
if (fence->GetCompletedValue() < current_frame_fence_value)
{
PIXBeginEvent(0, "CPU Waiting for GPU to reach fence value: %d", current_frame_fence_value);
// Wait for the next frame resource to be ready
fence->SetEventOnCompletion(current_frame_fence_value, fence_event);
WaitForSingleObject(fence_event, INFINITE);
PIXEndEvent();
}
// Next frame is ready to be rendered
// Update the frame_index. GetCurrentBackBufferIndex() gets incremented after swapchain->Present() calls.
frame_index = swapchain->GetCurrentBackBufferIndex();
frames[frame_index].fence_value = next_frame_fence_value;
}
Here's the whole timing capture: https://1drv.ms/u/s!AiGFMy6hVmtNgaky52n7QDrQ6o7V1A?e=MFc4xW
EDIT: Fixed answer
void gpu_interface::next_frame()
{
check_hr(swapchain->Present(0, 0));
UINT64 current_frame_fence_value = get_frame_resource()->fence_value;
UINT64 next_frame_fence_value = current_frame_fence_value + 1;
check_hr(graphics_cmd_queue->Signal(fence.Get(), current_frame_fence_value));
//// Update the frame_index. GetCurrentBackBufferIndex() gets incremented after swapchain->Present() calls.
frame_index = swapchain->GetCurrentBackBufferIndex();
// The GPU must have reached at least up to the fence value of the frame we're about to render.
size_t minimum_fence = get_frame_resource()->fence_value;
size_t completed = fence->GetCompletedValue();
if (completed < minimum_fence)
{
PIXBeginEvent(0, "CPU Waiting for GPU to reach fence value: %d", minimum_fence);
// Wait for the next frame resource to be ready
fence->SetEventOnCompletion(minimum_fence, fence_event);
WaitForSingleObject(fence_event, INFINITE);
PIXEndEvent();
}
frames[frame_index].fence_value = next_frame_fence_value;
{
// CPU and GPU frame-to-frame event.
PIXEndEvent(graphics_cmd_queue.Get());
PIXBeginEvent(graphics_cmd_queue.Get(), 0, "fence value: %d", next_frame_fence_value);
}
}
Timing capture of the correct code: https://1drv.ms/u/s!AiGFMy6hVmtNgakzGizTiA_s-FwPqA?e=qIHHTw
You signal the queue with current_frame_fence_value and right after you check
if (fence->GetCompletedValue() < current_frame_fence_value)
if the fence completed that value. You need to check the fence value for the next frame to see if you can continue and that is fence_values[frame_index] where frame_index is updated. It would go something like this:
void gpu_interface::next_frame()
{
check_hr(swapchain->Present(0, 0));
UINT64 current_frame_fence_value = get_frame_resource()->fence_value;
check_hr(graphics_cmd_queue->Signal(fence.Get(), current_frame_fence_value));
UINT64 next_frame_fence_value = current_frame_fence_value + 1;
frame_index = swapchain->GetCurrentBackBufferIndex();
// The GPU must have reached at least up to the fence value of the frame we're about to render.
//current_frame_fence_value is not the fence value of the frame you are about the render, it is fence_values[frame_index]
//note that frame_index is updated before this call
if (fence->GetCompletedValue() < fence_values[frame_index])
{
// Wait for the next frame resource to be ready
fence->SetEventOnCompletion(fence_values[frame_index], fence_event);
WaitForSingleObject(fence_event, INFINITE);
}
frames[frame_index].fence_value = next_frame_fence_value;
}
Try writing down fence values for the first few frames to see how that works.

Varispeed with Libsndfile, Libsamplerate and Portaudio in C

I'm working on an audio visualizer in C with OpenGL, Libsamplerate, portaudio, and libsndfile. I'm having difficulty using src_process correctly within my whole paradigm. My goal is to use src_process to achieve Vinyl Like varispeed in real time within the visualizer. Right now my implementation changes the pitch of the audio without changing the speed. It does so with lots of distortion due to what sounds like missing frames as when I lower the speed with the src_ratio it almost sounds granular like chopped up samples. Any help would be appreciated, I keep experimenting with my buffering chunks however 9 times out of 10 I get a libsamplerate error saying my input and output arrays are overlapping. I've also been looking at the speed change example that came with libsamplerate and I can't find where I went wrong. Any help would be appreciated.
Here's the code I believe is relevant. Thanks and let me know if I can be more specific, this semester was my first experience in C and programming.
#define FRAMES_PER_BUFFER 1024
#define ITEMS_PER_BUFFER (FRAMES_PER_BUFFER * 2)
float src_inBuffer[ITEMS_PER_BUFFER];
float src_outBuffer[ITEMS_PER_BUFFER];
void initialize_SRC_DATA()
{
data.src_ratio = 1; //Sets Default Playback Speed
/*---------------*/
data.src_data.data_in = data.src_inBuffer; //Point to SRC inBuffer
data.src_data.data_out = data.src_outBuffer; //Point to SRC OutBuffer
data.src_data.input_frames = 0; //Start with Zero to Force Load
data.src_data.output_frames = ITEMS_PER_BUFFER
/ data.sfinfo1.channels; //Number of Frames to Write Out
data.src_data.src_ratio = data.src_ratio; //Sets Default Playback Speed
}
/* Open audio stream */
err = Pa_OpenStream( &g_stream,
NULL,
&outputParameters,
data.sfinfo1.samplerate,
FRAMES_PER_BUFFER,
paNoFlag,
paCallback,
&data );
/* Read FramesPerBuffer Amount of Data from inFile into buffer[] */
numberOfFrames = sf_readf_float(data->inFile, data->src_inBuffer, framesPerBuffer);
/* Looping of inFile if EOF is Reached */
if (numberOfFrames < framesPerBuffer)
{
sf_seek(data->inFile, 0, SEEK_SET);
numberOfFrames = sf_readf_float(data->inFile,
data->src_inBuffer+(numberOfFrames*data->sfinfo1.channels),
framesPerBuffer-numberOfFrames);
}
/* Inform SRC Data How Many Input Frames To Process */
data->src_data.end_of_input = 0;
data->src_data.input_frames = numberOfFrames;
/* Perform SRC Modulation, Processed Samples are in src_outBuffer[] */
if ((data->src_error = src_process (data->src_state, &data->src_data))) {
printf ("\nError : %s\n\n", src_strerror (data->src_error)) ;
exit (1);
}
* Write Processed SRC Data to Audio Out and Visual Out */
for (i = 0; i < framesPerBuffer * data->sfinfo1.channels; i++)
{
// gl_audioBuffer[i] = data->src_outBuffer[i] * data->amplitude;
out[i] = data->src_outBuffer[i] * data->amplitude;
}
I figured out a solution that works well enough for me and am just going to explain it best I can for anyone else with a similar issue. So to get the Varispeed to work, the way the API works is you give it a certain number of frames, and it spits out a certain number of frames. So for a SRC ratio of 0.5, if you process 512 frames per loop you are feeding in 512/0.5 frames = 1024 frames. That way when the API runs its src_process function, it compresses those 1024 frames into 512, speeding up the samples. So I dont fully understand why it solved my issue, but the problem was if the ratio is say 0.7, you end up with a float number which doesn't work with the arrays indexed int values. Therefore there's missing samples unless the src ratio is eqaully divisble by the framesperbuffer potentially at the end of each block. So what I did was add +2 frames to be read if the framesperbuffer%src.ratio != 0 and it seemed to fix 99% of the glitches.
/* This if Statement Ensures Smooth VariSpeed Output */
if (fmod((double)framesPerBuffer, data->src_data.src_ratio) == 0)
{
numInFrames = framesPerBuffer;
}
else
numInFrames = (framesPerBuffer/data->src_data.src_ratio) + 2;
/* Read FramesPerBuffer Amount of Data from inFile into buffer[] */
numberOfFrames = sf_readf_float(data->inFile, data->src_inBuffer, numInFrames);

ios audio queue - how to meter audio level in buffer?

I'm working on an app that should do some audio signal processing. I need to measure the audio level in each one of the buffers I get (through the Callback function). I've been searching the web for some time, and I found that there is a build-in property called Current level metering:
AudioQueueGetProperty(recordState->queue,kAudioQueueProperty_CurrentLevelMeter,meters,&dlen);
This property gets me the average or peak audio level, but it's not synchronised to the current buffer.
I figured out I need to calculate the audio level from the buffer data by myself, so I had this:
double calcAudioRMS (SInt16 * audioData, int numOfSamples)
{
double RMS, adPercent;
RMS = 0;
for (int i=0; i<numOfSamples; i++)
{
adPercent=audioData[i]/32768.0f;
RMS += adPercent*adPercent;
}
RMS = sqrt(RMS / numOfSamples);
return RMS;
}
This function gets the audio data (casted into Sint16) and the number of samples in the current buffer. The numbers I get are indeed between 0 and 1, but they seem to be rather random and low comparing to the numbers I got from the built-in audio level metering.
The recording audio format is:
format->mSampleRate = 8000.0;
format->mFormatID = kAudioFormatLinearPCM;
format->mFramesPerPacket = 1;
format->mChannelsPerFrame = 1;
format->mBytesPerFrame = 2;
format->mBytesPerPacket = 2;
format->mBitsPerChannel = 16;
format->mReserved = 0;
format->mFormatFlags = kLinearPCMFormatFlagIsSignedInteger |kLinearPCMFormatFlagIsPacked;
My question is how to get the right values from the buffer? Is there a built-in function \ property for this? Or should I calculate the audio level myself, and how to do it?
Thanks in advance.
Your calculation for RMS power is correct. I'd be inclined to say that you have a fewer number of samples than Apple does, or something similar, and that would explain the difference. You can check by inputting a loud sine wave, and checking that Apple (and you) calculate RMS power at 1/sqrt(2).
Unless there's a good reason, I would use Apple's power calculations. I've used them, and they seem good to me. Additionally, generally you don't want RMS power, you want RMS power as decibels, or use the kAudioQueueProperty_CurrentLevelMeterDB constant. (This depends on if you're trying to build an audio meter, or truly display the audio power)

Flicker removal using OpenCV?

I am a newbie to openCV. I have installed the opencv library on a ubuntu system, compiled it and trying to look into some image/video processing apps in opencv to understand more.
I am interested to know if OpenCV library has any algorithm/class for removal flicker in captured videos? If yes what document or code should I should look deeper into?
If openCV does not have it, are there any standard implementations in some other Video processing library/SDK/Matlab,.. which provide algorithms for flicker removal from video sequences?
Any pointers would be useful
Thank you.
-AD.
I don't know any standard way to deflicker a video.
But VirtualDub is a Video Processing software which has a Filter for deflickering the video. You can find it's filter source and documents (algorithm description probably) here.
I wrote my own Deflicker C++ function. here it is. You can cut and paste this code as is - no headers needed other than the usual openCV ones.
Mat deflicker(Mat,int);
Mat prevdeflicker;
Mat deflicker(Mat Mat1,int strengthcutoff = 20){ //deflicker - compares each pixel of the frame to a previously stored frame, and throttle small changes in pixels (flicker)
if (prevdeflicker.rows){//check if we stored a previous frame of this name.//if not, theres nothing we can do. clone and exit
int i,j;
uchar* p;
uchar* prevp;
for( i = 0; i < Mat1.rows; ++i)
{
p = Mat1.ptr<uchar>(i);
prevp = prevdeflicker.ptr<uchar>(i);
for ( j = 0; j < Mat1.cols; ++j){
Scalar previntensity = prevp[j];
Scalar intensity = p[j];
int strength = abs(intensity.val[0] - previntensity.val[0]);
if(strength < strengthcutoff){ //the strength of the stimulus must be greater than a certain point, else we do not want to allow the change
//value 25 works good for medium+ light. anything higher creates too much blur around moving objects.
//in low light however this makes it worse, since low light seems to increase contrasts in flicker - some flickers go from 0 to 255 and back. :(
//I need to write a way to track large group movements vs small pixels, and only filter out the small pixel stuff. maybe blur first?
if(intensity.val[0] > previntensity.val[0]){ // use the previous frames value. Change it by +1 - slow enough to not be noticable flicker
p[j] = previntensity.val[0] + 1;
}else{
p[j] = previntensity.val[0] - 1;
}
}
}
}//end for
}
prevdeflicker = Mat1.clone();//clone the current one as the old one.
return Mat1;
}
Call it as: Mat= deflicker(Mat). It needs a loop, and a greyscale image, like so:
for(;;){
cap >> frame; // get a new frame from camera
cvtColor( frame, src_grey, CV_RGB2GRAY ); //convert to greyscale - simplifies everything
src_grey = deflicker(src_grey); // this is the function call
imshow("grey video", src_grey);
if(waitKey(30) >= 0) break;
}

Resources