I am currently converting image from RGB to YCrCb format using OpenCV function -cvtColor. I would like perform the conversion on my own with equations similar to
//equations for RGB to YUV conversion
Y' = 0.299 R + 0.587 G + 0.114 B
U = -0.147 R - 0.289 G + 0.436 B
V = 0.615 R - 0.515 G - 0.100 B.
I am not able to understand OpenCV image matrix operation. I would like to access RGB pixel values from image Mat so that I can perform the conversion myself. How can I get R,G,B values from image and then how to apply the transformation ? My current code below.
int main (int argc, char *argv[])
{
// Load in image
cv::Mat src = cv ::imread("C:\\openv2410\\frames\\frame_0.png",1);
// Create a vector for the channels and split the original image into B G R colour channels.
// Keep in mind that OpenCV uses BGR and not RGB images
vector<cv::Mat> spl;
split(src,spl);
// Create an zero pixel image for filling purposes - will become clear later
// Also create container images for B G R channels as colour images
cv::Mat empty_image = cv::Mat::zeros(src.rows, src.cols, CV_8UC1);
cv::Mat empty_channel = cv::Mat::zeros(src.rows, src.cols, CV_8UC1);
cv::Mat result_blue(src.rows, src.cols, CV_8UC3); // notice the 3 channels here!
cv::Mat result_green(src.rows, src.cols, CV_8UC3); // notice the 3 channels here!
cv::Mat result_red(src.rows, src.cols, CV_8UC3); // notice the 3 channels here!
// Create blue channel
cv::Mat in1[] = { spl[0], empty_image, empty_image };
int from_to1[] = { 0,0, 1,1, 2,2 };
mixChannels( in1, 3, &result_blue, 1, from_to1, 3 );
// Create green channel
cv::Mat in2[] = { empty_channel, spl[1], empty_image };
int from_to2[] = { 0,0, 1,1, 2,2 };
mixChannels( in2, 3, &result_green, 1, from_to2, 3 );
// Create red channel
cv::Mat in3[] = { empty_channel, empty_channel, spl[2]};
int from_to3[] = { 0,0, 1,1, 2,2 };
mixChannels( in3, 3, &result_red, 1, from_to3, 3 );
imshow("blue channel",result_blue);
imshow("green channel",result_green);
imshow("red channel",result_red);
cv::waitKey(0);
return 0;
}
Sample code for conversion from BGR to YCrCb. Source(1).
//sample input and output
float data[3][1] = { 98,76,88 };
Mat input( 1, 1, CV_32FC3, data) ;
Mat output( 1, 1, CV_32FC3 );
//iterate over all pixels
for(int i = 0; i < input.rows; i++) {
for(int j = 0; j < input.cols; j++) {
//get bgr pixel
Vec3f bgrPixel = input.at<Vec3f>(i, j);
float B = bgrPixel[0];
float G = bgrPixel[1];
float R = bgrPixel[2];
//actual conversion from BGR to YCrCb
float delta = 0.5f;
float Y = 0.299f * R + 0.587f * G + 0.114f * B;
float Cb = (B - Y) * 0.564f + delta;
float Cr = (R - Y) * 0.713f + delta;
//store into result image
Vec3f yCrCbPixel( Y, Cr, Cb );
output.at<Vec3f>(i, j) = yCrCbPixel;
}
}
Related
I fitted an ellipse based on edges of extracted red ball. But it's not accurate.
I extracted this red ball based on HSV Color Space, but it always ignores the contour of this ball. (Perhaps because color of contour is much darker).
Any good ideas to let me fit a better ellipse for this ball? I want to find an ellipse which can embrace the red ball as accurate as possible.
It will be better if I can use existing functions of OpenCV.
I have fixed this problem. It is still unstable, but at most of time it works.
source image. All of those images can be detected: https://www.dropbox.com/sh/daerty94kv5k2n7/AABu9Axewe6mL0NdEX2nG5MIa?dl=0
Fit ellipse based on color
Re-fit ellipse based on color and edges
The Video link: https://www.youtube.com/watch?v=q0TQYREm9uA
Here is source code:
#include <iostream>
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
cv::Mat capturedImage = imread(argv[1]);
if( capturedImage.empty() )
{
cout << "Couldn't open image " << argv[1] << "\nUsage: fitellipse <image_name>\n";
return 0;
}
/*============================= Phase 1: Translate Color Space from RGB to HSV =====================================================*/
cv::Mat imgHSV;
cv::cvtColor(capturedImage, imgHSV, cv::COLOR_BGR2HSV); //Convert the captured frame from BGR to HSV
cv::Mat imgGray;
cv::cvtColor(capturedImage, imgGray, CV_RGB2GRAY);
cv::Mat imgThresholded;
cv::inRange(imgHSV, cv::Scalar(160, 80, 70), cv::Scalar(179, 255, 255), imgThresholded); //Threshold the image
//morphological opening
cv::erode(imgThresholded, imgThresholded, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(7, 7)) );
cv::dilate( imgThresholded, imgThresholded, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(7, 7)) );
//morphological closing (removes small holes from the foreground)
cv::dilate( imgThresholded, imgThresholded, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(7, 7)) );
cv::erode(imgThresholded, imgThresholded, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(7, 7)) );
namedWindow("imgThresholded", WINDOW_NORMAL);
imshow("imgThresholded", imgThresholded);
/*============================= Phase 2: Fit a coarse ellipse based on red color ======================================================*/
vector<vector<cv::Point> > contours;
cv::findContours(imgThresholded, contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE, cv::Point(0,0));
size_t index = 0;
size_t largestSize = 0;
for(size_t i = 0; i < contours.size(); i++)
{
if (contours[i].size() > largestSize)
{
largestSize = contours[i].size();
index = i;
}
}
if (contours[index].size() < 6)
{
cout << "Do not have enough points" << endl;
return -1;
}
cv::Mat imgContour;
cv::Mat(contours[index]).convertTo(imgContour, CV_32F);
cv::RotatedRect coarseEllipse = cv::fitEllipse(imgContour);
cv::Mat capturedImageClone = capturedImage.clone();
ellipse(capturedImageClone, coarseEllipse.center, coarseEllipse.size*0.5f, coarseEllipse.angle, 0.0, 360.0, cv::Scalar(0,255,255), 3, CV_AA);
namedWindow("capturedImageClone", CV_WINDOW_NORMAL);
imshow("capturedImageClone", capturedImageClone);
/*============================= Phase 3: Re-fit a final ellipse based on combination of color and edge ===============================*/
double cxc = coarseEllipse.center.x;
double cyc = coarseEllipse.center.y;
double ca = coarseEllipse.size.height/2;
double cb = coarseEllipse.size.width/2;
cv::Mat mask(capturedImage.rows, capturedImage.cols, CV_8UC3, cv::Scalar(0,0,0));
cv::circle(mask, cv::Point(coarseEllipse.center.x, coarseEllipse.center.y), coarseEllipse.size.height/2 + 100, cv::Scalar(255,255,255), -1);
cv::Mat imgMask;
cv::Mat edges;
cv::bitwise_and(capturedImage, mask, imgMask);
namedWindow("imgMask", CV_WINDOW_NORMAL);
imshow("imgMask", imgMask);
cv::GaussianBlur(imgMask, edges, cv::Size(5,5), 0);
cv::Canny(edges, edges, 50, 100);
namedWindow("edges", CV_WINDOW_NORMAL);
imshow("edges", edges);
cv::findContours(edges, contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE, cv::Point(0,0));
index = -1;
double centerDistance = (numeric_limits<double>::max)();
double abRatio = (numeric_limits<double>::max)();
cv::RotatedRect finalEllipse;
for (size_t i = 0; i < contours.size(); i++)
{
if (contours[i].size() < 500 || i == contours.size() - 1 || i == contours.size() - 2)
continue;
cv::Mat(contours[i]).convertTo(imgContour, CV_32F);
cv::RotatedRect tmpEllipse = cv::fitEllipse(imgContour);
double txc = tmpEllipse.center.x;
double tyc = tmpEllipse.center.y;
double ta = tmpEllipse.size.height/2;
double tb = tmpEllipse.size.width/2;
double tmpDis = (cxc - txc) * (cxc - txc) + (cyc - tyc) * (cyc - tyc);
if (tmpDis < centerDistance && fabs(tb/ta - 1) < abRatio && ta > ca && tb > cb)
{
centerDistance = tmpDis;
abRatio = fabs(tb/ta - 1);
index = i;
finalEllipse = tmpEllipse;
}
}
if (index == -1)
finalEllipse = coarseEllipse;
ellipse(capturedImage, finalEllipse.center, finalEllipse.size*0.5f, finalEllipse.angle, 0.0, 360.0, cv::Scalar(0,255,255), 3, CV_AA);
double xc = finalEllipse.center.x; // center x
double yc = finalEllipse.center.y; // center y
double theta = finalEllipse.angle; // rotation angle theta
double a = finalEllipse.size.height / 2; // semi-major axis: a
double b = finalEllipse.size.width / 2; // semi-minor axis: b
double A = a * a * sin(theta) * sin(theta) + b * b * cos(theta) * cos(theta);
double B = 2 * (b * b - a * a) * sin(theta) * cos(theta);
double C = a * a * cos(theta) * cos(theta) + b * b * sin(theta) * sin(theta);
double D = -2 * A * xc - B * yc;
double E = -B * xc - 2 * C * yc;
double F = A * xc * xc + B * xc * yc + C * yc * yc - a * a * b * b;
A = A/F;
B = B/F;
C = C/F;
D = D/F;
E = E/F;
F = F/F;
double ellipseArray[3][3] = {{A, B/2, D/2},
{B/2, C, E/2},
{D/2, E/2, F}};
cv::Mat ellipseMatrix(3,3,CV_64FC1, ellipseArray);
cout << ellipseMatrix << endl;
namedWindow("capturedImage", CV_WINDOW_NORMAL);
imshow("capturedImage", capturedImage);
imwrite(argv[2],capturedImage);
imwrite(argv[3],edges);
imwrite(argv[4],capturedImageClone);
imwrite(argv[5],imgMask);
waitKey(0);
return 0;
}
I wrote down an openCV code .I tried to embed a 64X64 pix watermark image in a 512X512 image.
my code has 5 parts:
reading two pictures( watermark and original image that I want to
embed watermark in it)
resize 2 readed images to specified size.(64X64 for watermark image
and 512X512 for original image)
devide original resized image to 8X8 blocks and transform them with
DCT.
embedding each pixel of watermark in each block of original image.
applying inverse DCT on each block.
I have this problem that all of three imshows have same results.
thank you for your help :)
here is my code :
int _tmain(int argc, _TCHAR* argv[])
{
int index=0;
int iindex=0;
vector<Mat> blocks(4096);
/////////////Part1:reading images
Mat originalImage;
originalImage = imread("C:\\MGC.jpg",CV_LOAD_IMAGE_GRAYSCALE);
Mat watermarkImage;
watermarkImage = imread("C:\\ivp_lg.bmp" , CV_LOAD_IMAGE_GRAYSCALE);
/// show original image
namedWindow("Original");
int x = 0; int y = 0;
moveWindow("Original", x, y);
imshow("Original", originalImage);
x += 100; y += 100;
//////Part 2:Leave originals alone, work on a copys. resize readed images
Mat dctImage = originalImage.clone();
Mat wmrk = watermarkImage.clone();
Mat tmp1(512, 512, CV_8UC1);
Mat tmp2(64, 64, CV_8UC1);
resize(dctImage, dctImage, tmp1.size());
resize(wmrk, wmrk , tmp2.size());
/////Part 3:break dctImage into 8X8 blocks and applying DCT on each block
for (int i = 0; i < 512; i += 8)
{
for (int j = 0; j < 512; j+= 8)
{
Mat block = dctImage(Rect(i, j, 8, 8));
block.convertTo(block, CV_32FC1);
dct(block,blocks[index]);
blocks[index].convertTo(blocks[index], CV_8UC1);
index++;
}
}
/// show transformed image
namedWindow("TransformedImage");
moveWindow("TransformedImage", x, y);
imshow("TransformedImage",dctImage );
x += 100; y += 100;
//////Part 4: embeding watermark. if corresponding pixel of watermark was 255 then element (5,5) in the block increase 200 otherwise do nothing
for(int idx=0 ; idx<4096 ; idx++)
{
int i=idx/64;
int j=idx%64;
float elem=(float) wmrk.at<uchar>(i,j);
if (elem>=128)
{
float tmp=(float) blocks[idx].at<uchar>(5,5);
float temp=tmp +200;
uchar ch=(uchar) temp;
blocks[idx].at<uchar>(5,5)=ch;
}
}
//////Part 5:applying iDCT on each block
for (int i = 0; i < 512; i += 8)
{
for (int j = 0; j < 512; j+= 8)
{
Mat block = dctImage(Rect(i, j, 8, 8));
block.convertTo(block, CV_32FC1);
idct(block,blocks[iindex]);
blocks[iindex].convertTo(blocks[iindex], CV_8UC1);
iindex++;
}
}
/// show watermarked image
namedWindow("WatermarkedImage");
moveWindow("WatermarkedImage", x, y);
imshow("WatermarkedImage",dctImage );
cvWaitKey(80000);
destroyAllWindows();
return 0;
}
#N_Kh As far as I have seen ur code in hurry, You are executing IMSHOW Command over the Matrix dctImage while you are performing operation on different Matrix and vector Block and Blocks respectively.
I tried to perform EM based back ground foreground segmentation using a code below...which I also found in Stackoverflow....But seems there is some error somewhere as I dont ever see the second printf statement to get executed... . basically it is never reaching the classification/clustering part of the code..The code is given below..Could someone help me on this ?
#include <opencv2/opencv.hpp>
#include <opencv2/legacy/legacy.hpp>
char str1[60];
int main()
{
cv::Mat source = cv::imread("C:\\Image Input\\part1.bmp" );
if(!source.data)
printf(" No data \n");
//ouput images
cv::Mat meanImg(source.rows, source.cols, CV_32FC3);
cv::Mat fgImg(source.rows, source.cols, CV_8UC3);
cv::Mat bgImg(source.rows, source.cols, CV_8UC3);
//convert the input image to float
cv::Mat floatSource;
source.convertTo(floatSource, CV_32F);
//now convert the float image to column vector
cv::Mat samples(source.rows * source.cols, 3, CV_32FC1);
int idx = 0;
for (int y = 0; y < source.rows; y++) {
cv::Vec3f* row = floatSource.ptr<cv::Vec3f > (y);
for (int x = 0; x < source.cols; x++) {
samples.at<cv::Vec3f > (idx++, 0) = row[x];
}
}
printf(" After Loop \n");
//we need just 2 clusters
cv::EMParams params(2);
cv::ExpectationMaximization em(samples, cv::Mat(), params);
//the two dominating colors
cv::Mat means = em.getMeans();
//the weights of the two dominant colors
cv::Mat weights = em.getWeights();
//we define the foreground as the dominant color with the largest weight
const int fgId = weights.at<float>(0) > weights.at<float>(1) ? 0 : 1;
printf(" After Training \n");
//now classify each of the source pixels
idx = 0;
for (int y = 0; y < source.rows; y++)
{
printf(" Now Classify\n");
for (int x = 0; x < source.cols; x++)
{
//classify
const int result = cvRound(em.predict(samples.row(idx++), NULL));
//get the according mean (dominant color)
const double* ps = means.ptr<double>(result, 0);
//set the according mean value to the mean image
float* pd = meanImg.ptr<float>(y, x);
//float images need to be in [0..1] range
pd[0] = ps[0] / 255.0;
pd[1] = ps[1] / 255.0;
pd[2] = ps[2] / 255.0;
//set either foreground or background
if (result == fgId) {
fgImg.at<cv::Point3_<uchar> >(y, x, 0) = source.at<cv::Point3_<uchar> >(y, x, 0);
} else {
bgImg.at<cv::Point3_<uchar> >(y, x, 0) = source.at<cv::Point3_<uchar> >(y, x, 0);
}
}
}
printf(" Show Images \n");
cv::imshow("Means", meanImg);
cv::imshow("Foreground", fgImg);
cv::imshow("Background", bgImg);
cv::waitKey(0);
return 0;
}
The code works fine. I think that you use too large images, and learning takes too long time. Try process small images.
Just 1 correction, initialize images with zeros:
//ouput images
cv::Mat meanImg=Mat::zeros(source.rows, source.cols, CV_32FC3);
cv::Mat fgImg=Mat::zeros(source.rows, source.cols, CV_8UC3);
cv::Mat bgImg=Mat::zeros(source.rows, source.cols, CV_8UC3);
as input data I have a 24 bit RGB image and a palette with 2..20 fixed colours. These colours are in no way spread regularly over the full colour range.
Now I have to modify the colours of input image so that only the colours of the given palette are used - using the colour out of the palette that is closest to the original colour (not closest mathematically but for human's visual impression). So what I need is an algorithm that uses an input colour and finds the colour in target palette that visually fits best to this colour. Please note: I'm not looking for a stupid comparison/difference algorithm but for something that really incorporates the impression a colour has on humans!
Since this is something that already should have been done and because I do not want to re-invent the wheel again: is there some example source code out there that does this job? In best case it is really a piece of code and not a link to a desastrous huge library ;-)
(I'd guess OpenCV does not provide such a function?)
Thanks
You should look at the Lab color space. It was designed so that the distance in the colour space equals the perceptual distance. So once you have converted your image you can compute the distances as you would have done earlier, but should get a better result from a perceptual point of view. In OpenCV you can use the cvtColor(source, destination, CV_BGR2Lab) function.
Another Idea would be to use dithering. The idea is to mix missing colours using neighbouring pixels. A popular algorithm for this is Floyd-Steinberg dithering.
Here is an example of mine, where I combined a optimized palette using k-means with the Lab colourspace and floyd steinberg dithering:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
cv::Mat floydSteinberg(cv::Mat img, cv::Mat palette);
cv::Vec3b findClosestPaletteColor(cv::Vec3b color, cv::Mat palette);
int main(int argc, char** argv)
{
// Number of clusters (colors on result image)
int nrColors = 18;
cv::Mat imgBGR = imread(argv[1],1);
cv::Mat img;
cvtColor(imgBGR, img, CV_BGR2Lab);
cv::Mat colVec = img.reshape(1, img.rows*img.cols); // change to a Nx3 column vector
cv::Mat colVecD;
colVec.convertTo(colVecD, CV_32FC3, 1.0); // convert to floating point
cv::Mat labels, centers;
cv::kmeans(colVecD, nrColors, labels,
cv::TermCriteria(CV_TERMCRIT_ITER, 100, 0.1),
3, cv::KMEANS_PP_CENTERS, centers); // compute k mean centers
// replace pixels by there corresponding image centers
cv::Mat imgPosterized = img.clone();
for(int i = 0; i < img.rows; i++ )
for(int j = 0; j < img.cols; j++ )
for(int k = 0; k < 3; k++)
imgPosterized.at<Vec3b>(i,j)[k] = centers.at<float>(labels.at<int>(j+img.cols*i),k);
// convert palette back to uchar
cv::Mat palette;
centers.convertTo(palette,CV_8UC3,1.0);
// call floyd steinberg dithering algorithm
cv::Mat fs = floydSteinberg(img, palette);
cv::Mat imgPosterizedBGR, fsBGR;
cvtColor(imgPosterized, imgPosterizedBGR, CV_Lab2BGR);
cvtColor(fs, fsBGR, CV_Lab2BGR);
imshow("input",imgBGR); // original image
imshow("result",imgPosterizedBGR); // posterized image
imshow("fs",fsBGR); // floyd steinberg dithering
waitKey();
return 0;
}
cv::Mat floydSteinberg(cv::Mat imgOrig, cv::Mat palette)
{
cv::Mat img = imgOrig.clone();
cv::Mat resImg = img.clone();
for(int i = 0; i < img.rows; i++ )
for(int j = 0; j < img.cols; j++ )
{
cv::Vec3b newpixel = findClosestPaletteColor(img.at<Vec3b>(i,j), palette);
resImg.at<Vec3b>(i,j) = newpixel;
for(int k=0;k<3;k++)
{
int quant_error = (int)img.at<Vec3b>(i,j)[k] - newpixel[k];
if(i+1<img.rows)
img.at<Vec3b>(i+1,j)[k] = min(255,max(0,(int)img.at<Vec3b>(i+1,j)[k] + (7 * quant_error) / 16));
if(i-1 > 0 && j+1 < img.cols)
img.at<Vec3b>(i-1,j+1)[k] = min(255,max(0,(int)img.at<Vec3b>(i-1,j+1)[k] + (3 * quant_error) / 16));
if(j+1 < img.cols)
img.at<Vec3b>(i,j+1)[k] = min(255,max(0,(int)img.at<Vec3b>(i,j+1)[k] + (5 * quant_error) / 16));
if(i+1 < img.rows && j+1 < img.cols)
img.at<Vec3b>(i+1,j+1)[k] = min(255,max(0,(int)img.at<Vec3b>(i+1,j+1)[k] + (1 * quant_error) / 16));
}
}
return resImg;
}
float vec3bDist(cv::Vec3b a, cv::Vec3b b)
{
return sqrt( pow((float)a[0]-b[0],2) + pow((float)a[1]-b[1],2) + pow((float)a[2]-b[2],2) );
}
cv::Vec3b findClosestPaletteColor(cv::Vec3b color, cv::Mat palette)
{
int i=0;
int minI = 0;
cv::Vec3b diff = color - palette.at<Vec3b>(0);
float minDistance = vec3bDist(color, palette.at<Vec3b>(0));
for (int i=0;i<palette.rows;i++)
{
float distance = vec3bDist(color, palette.at<Vec3b>(i));
if (distance < minDistance)
{
minDistance = distance;
minI = i;
}
}
return palette.at<Vec3b>(minI);
}
Try this algorithm (it will reduct color number, but it compute palette by itself):
#include <opencv2/opencv.hpp>
#include "opencv2/legacy/legacy.hpp"
#include <vector>
#include <list>
#include <iostream>
using namespace cv;
using namespace std;
void main(void)
{
// Number of clusters (colors on result image)
int NrGMMComponents = 32;
// Source file name
string fname="D:\\ImagesForTest\\tools.jpg";
cv::Mat SampleImg = imread(fname,1);
//cv::GaussianBlur(SampleImg,SampleImg,Size(5,5),3);
int SampleImgHeight = SampleImg.rows;
int SampleImgWidth = SampleImg.cols;
// Pick datapoints
vector<Vec3d> ListSamplePoints;
for (int y=0; y<SampleImgHeight; y++)
{
for (int x=0; x<SampleImgWidth; x++)
{
// Get pixel color at that position
Vec3b bgrPixel = SampleImg.at<Vec3b>(y, x);
uchar b = bgrPixel.val[0];
uchar g = bgrPixel.val[1];
uchar r = bgrPixel.val[2];
if(rand()%25==0) // Pick not every, bu t every 25-th
{
ListSamplePoints.push_back(Vec3d(b,g,r));
}
} // for (x)
} // for (y)
// Form training matrix
Mat labels;
int NrSamples = ListSamplePoints.size();
Mat samples( NrSamples, 3, CV_32FC1 );
for (int s=0; s<NrSamples; s++)
{
Vec3d v = ListSamplePoints.at(s);
samples.at<float>(s,0) = (float) v[0];
samples.at<float>(s,1) = (float) v[1];
samples.at<float>(s,2) = (float) v[2];
}
cout << "Learning to represent the sample distributions with" << NrGMMComponents << "gaussians." << endl;
// Algorithm parameters
CvEMParams params;
params.covs = NULL;
params.means = NULL;
params.weights = NULL;
params.probs = NULL;
params.nclusters = NrGMMComponents;
params.cov_mat_type = CvEM::COV_MAT_GENERIC; // DIAGONAL, GENERIC, SPHERICAL
params.start_step = CvEM::START_AUTO_STEP;
params.term_crit.max_iter = 1500;
params.term_crit.epsilon = 0.001;
params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
//params.term_crit.type = CV_TERMCRIT_ITER;
// Train
cout << "Started GMM training" << endl;
CvEM em_model;
em_model.train( samples, Mat(), params, &labels );
cout << "Finished GMM training" << endl;
// Result image
Mat img = Mat::zeros( Size( SampleImgWidth, SampleImgHeight ), CV_8UC3 );
// Ask classifier for each pixel
Mat sample( 1, 3, CV_32FC1 );
Mat means;
means=em_model.getMeans();
for(int i = 0; i < img.rows; i++ )
{
for(int j = 0; j < img.cols; j++ )
{
Vec3b v=SampleImg.at<Vec3b>(i,j);
sample.at<float>(0,0) = (float) v[0];
sample.at<float>(0,1) = (float) v[1];
sample.at<float>(0,2) = (float) v[2];
int response = cvRound(em_model.predict( sample ));
img.at<Vec3b>(i,j)[0]=means.at<double>(response,0);
img.at<Vec3b>(i,j)[1]=means.at<double>(response,1);
img.at<Vec3b>(i,j)[2]=means.at<double>(response,2);
}
}
img.convertTo(img,CV_8UC3);
imshow("result",img);
waitKey();
// Save the result
cv::imwrite("result.png", img);
}
PS: For perceptive color distance measurement it's better to use L*a*b color space. There is converter in opencv for this purpose. For clustering you can use k-means with defined cluster centers (your palette entries). After clustering you'll get points with indexes of palette intries.
I'm messing around with OpenCV, and am trying to do some of the same stuff signal processing stuff I've done in MatLab. I'm looking to mask out some frequencies, so I have constructed a matrix which will do this. The problem is that there seem to be a few more steps in OpenCV than in Matlab to accomplish this.
In Matlab, it's simple enough:
F = fft2(image);
smoothF = F .* mask; // multiply FT by mask
smooth = ifft2(smoothF); // do inverse FT
But I'm having trouble doing the same in OpenCV. The DFT leaves me with a 2 channel image, so I've split the image, multiplied by the mask, merged it back, and then perform the inverse DFT. However, I got a weird result in my final image. I'm pretty sure I'm missing something...
CvMat* maskImage(CvMat* im, int maskWidth, int maskHeight)
{
CvMat* mask = cvCreateMat(im->rows, im->cols, CV_64FC1);
cvZero(mask);
int cx, cy;
cx = mask->cols/2;
cy = mask->rows/2;
int left_x = cx - maskWidth;
int right_x = cx + maskWidth;
int top_y = cy + maskHeight;
int bottom_y = cy - maskHeight;
//create mask
for(int i = bottom_y; i < top_y; i++)
{
for(int j = left_x; j < right_x; j++)
{
cvmSet(mask,i,j,1.0f); // Set M(i,j)
}
}
cvShiftDFT(mask, mask);
IplImage* maskImage, stub;
maskImage = cvGetImage(mask, &stub);
cvNamedWindow("mask", 0);
cvShowImage("mask", maskImage);
CvMat* real = cvCreateMat(im->rows, im->cols, CV_64FC1);
CvMat* imag = cvCreateMat(im->rows, im->cols, CV_64FC1);
cvSplit(im, imag, real, NULL, NULL);
cvMul(real, mask, real);
cvMul(imag, mask, imag);
cvMerge(real, imag, NULL, NULL, im);
IplImage* maskedImage;
maskedImage = cvGetImage(imag, &stub);
cvNamedWindow("masked", 0);
cvShowImage("masked", maskedImage);
return im;
}
Any reason you are merging the real and imaginary components in the reverse order?