So I need to extract ellipses that are closest to being circles using OpenCV and Java since I have lot of false ellipses found. I have found the ellipses with color extraction and
Imgproc.fitEllipse(thisContour2f);
Current idea is to check all ellipse points and calculate widths from center. Those ellipses whose width variance in value is the smallest are closest to a circle in that image. Any better ideas?
I have also tried using Hough Circle but this does not detect anything.
Related
I'm trying to blindly detect signals in a spectra.
one way that came to my mind is to detect rectangles in the waterfall (a 2D matrix that can be interpret as an image) .
Is there any fast way (in the order of 0.1 second) to find center and width of all of the horizontal rectangles in an image? (heights of rectangles are not considered for me).
an example image will be uploaded (Note I know that all rectangles are horizontal.
I would appreciate it if you give me any other suggestion for this purpose.
e.g. I want the algorithm to give me 9 center and 9 coordinates for the above image.
Since the rectangle are aligned, you can do that quite easily and efficiently (this is not the case with unaligned rectangles since they are not clearly separated). The idea is first to compute the average color of each line and for each column. You should get something like that:
Then, you can subtract the background color (blue), compute the luminance and then compute a threshold. You can remove some artefact using a median/blur before.
Then, you can just scan the resulting 1D array filled with binary values so to locate where each rectangle start/stop. The center of each rectangle is ((x_start+x_end)/2, (y_start+y_end)/2).
I've been working off a variant of the opencv squares sample to detect rectangles. It's working fine for closed rectangles, but I was wondering what approaches I could take to detect rectangles that have openings ie missing corners, lines that are too short.
I perform some dilation, which closes small gaps but not these larger ones.
I considered using a convex hull or bounding rect to generate a contour for comparison but since the edges of the rectangle are disconnected, each would read as a separate contour.
I think the first step is to detect which lines are candidates for forming a complete rectangle, and then perform some sort of line extrapolation. This seems promising, but my rectangle edges won't lie perfectly horizontally or vertically.
I'm trying to detect the three leftmost rectangles in this image:
Perhaps this paper is of interest? Rectangle Detection based on a Windowed Hough Transform
Basically, take the hough line transform of the image. You will get maximums at the locations in (theta, rho) space which relate to the places where there are lines. The larger the value, the longer/straighter the line. Maybe do a threshold to only get the best lines. Then, we are trying to look for pairs of lines which are
1) parallel: the maximums occur at similar theta values
2) similar length: the values of the maximums are similar
3) orthogonal to another pair of lines: theta values are 90 degrees away from other pairs' theta values
There are some more details in the paper, such as doing the transform in a sliding window, and then using an error metric to consolidate multiple matches.
I'm trying to detect the border of the scanned documents because it will help increase my OCR extraction rate. Borders are considered marginal noise so I have to get rid of them. Borders usually have the highest density in an image.
I had examine every column of pixels in an image and the column which has the highest density is probably a border, if and only if, it is a line. And that's where my problem arises. I don't know how to detect if the column of pixel is a line or not.
Any help would be very much appreciated.Thanks.
You use Hough line transform, but it will give lines for the data on which you need to do OCR.
The simplest solution based on your question i can think of is this.
Since its border, you can reduce the search space based on some threshold in width and height.
For example, if your image is 'w x h' and your search space width 's' your search space will be '0 to s' 'w-s to w' '0 to s' 'h-s to h'.
There is in Opencv a line detection algorithm based on Hough transform :Tutorial on Hough transform
This will detect the line existing in your image, you just have to see after if the pixel you detect as border belong to one of the detected lines.
What is Distance Transform?What is the theory behind it?if I have 2 similar images but in different positions, how does distance transform help in overlapping them?The results that distance transform function produce are like divided in the middle-is it to find the center of one image so that the other is overlapped just half way?I have looked into the documentation of opencv but it's still not clear.
Look at the picture below (you may want to increase you monitor brightness to see it better). The pictures shows the distance from the red contour depicted with pixel intensities, so in the middle of the image where the distance is maximum the intensities are highest. This is a manifestation of the distance transform. Here is an immediate application - a green shape is a so-called active contour or snake that moves according to the gradient of distances from the contour (and also follows some other constraints) curls around the red outline. Thus one application of distance transform is shape processing.
Another application is text recognition - one of the powerful cues for text is a stable width of a stroke. The distance transform run on segmented text can confirm this. A corresponding method is called stroke width transform (SWT)
As for aligning two rotated shapes, I am not sure how you can use DT. You can find a center of a shape to rotate the shape but you can also rotate it about any point as well. The difference will be just in translation which is irrelevant if you run matchTemplate to match them in correct orientation.
Perhaps if you upload your images it will be more clear what to do. In general you can match them as a whole or by features (which is more robust to various deformations or perspective distortions) or even using outlines/silhouettes if they there are only a few features. Finally you can figure out the orientation of your object (if it has a dominant orientation) by running PCA or fitting an ellipse (as rotated rectangle).
cv::RotatedRect rect = cv::fitEllipse(points2D);
float angle_to_rotate = rect.angle;
The distance transform is an operation that works on a single binary image that fundamentally seeks to measure a value from every empty point (zero pixel) to the nearest boundary point (non-zero pixel).
An example is provided here and here.
The measurement can be based on various definitions, calculated discretely or precisely: e.g. Euclidean, Manhattan, or Chessboard. Indeed, the parameters in the OpenCV implementation allow some of these, and control their accuracy via the mask size.
The function can return the output measurement image (floating point) - as well as a labelled connected components image (a Voronoi diagram). There is an example of it in operation here.
I see from another question you have asked recently you are looking to register two images together. I don't think the distance transform is really what you are looking for here. If you are looking to align a set of points I would instead suggest you look at techniques like Procrustes, Iterative Closest Point, or Ransac.
I'm going to find the most look-like rectangles among shapes. The first image is the original image with shapes which possibly be rectangles but they are not. The green rectangles in the second image is what I want. So is there a way to do this with opencv? I've tried hough lines but the result's not good
The source image:
And what I want is to find out the most look-like rectangle among these shapes, like the rectangles in green.
What I want:
A very simple approach is, after you have a rectangle bounding box around your shape, count the percentage of pixels inside the box which are white.
The higher the percentage of white pixels, the closest to a rectangle it is.
To get the bounding boxes you should take a look at either findContours from opencv, or some Blob extracting algorithm, you will find plenty of questions regarding those.
Edit:
Maybe you should first get the Minimum bounding rectangles of the shapes and then do this kind of heuristic:
Shrink the rectangle dimensions until the white-pixel percentage inside the rectangle reaches some threshold defined by you (like 90% of white pixels inside the rectangle).
To get the Minimum bounding rectangle (the smallest rectangle which contains the whole shape), you might check this tutorial:
http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html
One thing that might also help is doing the difference of sizes from the minimum bounding rectangle and the maximum inner rectangle (the biggest rectangle you can fit inside the white shape). The less difference there is between those rectangle's properties (width, height, area, center coordinates) the closest is the shape to a rectangle.