ANTLR4 - Syntax error on '#' (alternative rule label) - parsing

I have made a grammar that will be used with ANTLR4 with the following definition for expressions:
// Expressions
Expr : Integer # Expr_Integer
| Float # Expr_Float
| Double # Expr_Double
| String # Expr_String
| Variable # Expr_Variable
| FuncCall # Expr_FuncCall
| Expr Op_Infix Expr # Expr_Infix
| Op_Prefix Expr # Expr_Prefix
| Expr Op_Postfix # Expr_Postfix
| Expr 'is' Id # Expr_Is
| 'this' # Expr_This
| Expr '?' Expr ':' Expr # Expr_Ternary
| '(' Expr ')' # Expr_Bracketed
;
I added the labels so that I could easily differentiate between the different expression types when analysing the generated syntax tree. However, ANTLR4 throws the following error for every single one of the above lines (excluding the one with the comment):
error(50): Ash.g4:88:19: syntax error: '#' came as a complete surprise to me while looking for lexer rule element
Line 88 is the final rule alternative ( '(' Expr ')' )
I have look through the documentation and various online examples and my syntax seems correct.
What could be causing the error to be thrown?

In Antlr, rules beginning with an uppercase letter are lexer rules, and those beginning with an lowercase letter are parser rules. Antlr uses these definitions a lot to define what you can and cannot do. Usually, the lexer is faster to proccess but less powerful than the parser.
In your case, Expr should definitely be a parser rule, as basically every other rule you have referenced there. Changing it to expr should match the expected behavior.
As a rule of thumb, lexer rules are to be used only when there is no context, it doesn't matter what is next to the generated token. Things like numeric constants, string constants, identifiers and such.

Related

parsing maxscript - problem with newlines

I am trying to create parser for MAXScript language using their official grammar description of the language. I use flex and bison to create the lexer and parser.
However, I have run into following problem. In traditional languages (e.g. C) statements are separated by a special token (; in C). But in MAXScript expressions inside a compound expression can be separated either by ; or newline. There are other languages that use whitespace characters in their parsers, like Python. But Python is much more strict about the placement of the newline, and following program in Python is invalid:
# compile error
def
foo(x):
print(x)
# compile error
def bar
(x):
foo(x)
However in MAXScript following program is valid:
fn
foo x =
( // parenthesis start the compound expression
a = 3 + 2; // the semicolon is optional
print x
)
fn bar
x =
foo x
And you can even write things like this:
for
x
in
#(1,2,3,4)
do
format "%," x
Which will evaluate fine and print 1,2,3,4, to the output. So newlines can be inserted into many places with no special meaning.
However if you insert one more newline in the program like this:
for
x
in
#(1,2,3,4)
do
format "%,"
x
You will get a runtime error as format function expects to have more than one parameter passed.
Here is part of the bison input file that I have:
expr:
simple_expr
| if_expr
| while_loop
| do_loop
| for_loop
| expr_seq
expr_seq:
"(" expr_semicolon_list ")"
expr_semicolon_list:
expr
| expr TK_SEMICOLON expr_semicolon_list
| expr TK_EOL expr_semicolon_list
if_expr:
"if" expr "then" expr "else" expr
| "if" expr "then" expr
| "if" expr "do" expr
// etc.
This will parse only programs which use newline only as expression separator and will not expect newlines to be scattered in other places in the program.
My question is: Is there some way to tell bison to treat a token as an optional token? For bison it would mean this:
If you find newline token and you can shift with it or reduce, then do so.
Otherwise just discard the newline token and continue parsing.
Because if there is no way to do this, the only other solution I can think of is modifying the bison grammar file so that it expects those newlines everywhere. And bump the precedence of the rule where newline acts as an expression separator. Like this:
%precedence EXPR_SEPARATOR // high precedence
%%
// w = sequence of whitespace tokens
w: %empty // either nothing
| TK_EOL w // or newline followed by other whitespace tokens
expr:
w simple_expr w
| w if_expr w
| w while_loop w
| w do_loop w
| w for_loop w
| w expr_seq w
expr_seq:
w "(" w expr_semicolon_list w ")" w
expr_semicolon_list:
expr
| expr w TK_SEMICOLON w expr_semicolon_list
| expr TK_EOL w expr_semicolon_list %prec EXPR_SEPARATOR
if_expr:
w "if" w expr w "then" w expr w "else" w expr w
| w "if" w expr w "then" w expr w
| w "if" w expr w "do" w expr w
// etc.
However this looks very ugly and error-prone, and I would like to avoid such solution if possible.
My question is: Is there some way to tell bison to treat a token as an optional token?
No, there isn't. (See below for a longer explanation with diagrams.)
Still, the workaround is not quite as ugly as you think, although it's not without its problems.
In order to simplify things, I'm going to assume that the lexer can be convinced to produce only a single '\n' token regardless of how many consecutive newlines appear in the program text, including the case where there are comments scattered among the blank lines. That could be achieved with a complex regular expression, but a simpler way to do it is to use a start condition to suppress \n tokens until a regular token is encountered. The lexer's initial start condition should be the one which suppresses newline tokens, so that blank lines at the beginning of the program text won't confuse anything.
Now, the key insight is that we don't have to insert "maybe a newline" markers all over the grammar, since every newline must appear right after some real token. And that means that we can just add one non-terminal for every terminal:
tok_id: ID | ID '\n'
tok_if: "if" | "if" '\n'
tok_then: "then" | "then" '\n'
tok_else: "else" | "else" '\n'
tok_do: "do" | "do" '\n'
tok_semi: ';' | ';' '\n'
tok_dot: '.' | '.' '\n'
tok_plus: '+' | '+' '\n'
tok_dash: '-' | '-' '\n'
tok_star: '*' | '*' '\n'
tok_slash: '/' | '/' '\n'
tok_caret: '^' | '^' '\n'
tok_open: '(' | '(' '\n'
tok_close: ')' | ')' '\n'
tok_openb: '[' | '[' '\n'
tok_closeb: ']' | ']' '\n'
/* Etc. */
Now, it's just a question of replacing the use of a terminal with the corresponding non-terminal defined above. (No w non-terminal is required.) Once we do that, bison will report a number of shift-reduce conflicts in the non-terminal definitions just added; any terminal which can appear at the end of an expression will instigate a conflict, since the newline could be absorbed either by the terminal's non-terminal wrapper or by the expr_semicolon_list production. We want the newline to be part of expr_semicolon_list, so we need to add precedence declarations starting with newline, so that it is lower precedence than any other token.
That will most likely work for your grammar, but it is not 100% certain. The problem with precedence-based solutions is that they can have the effect of hiding real shift-reduce conflict issues. So I'd recommend running bison on the grammar and verifying that all the shift-reduce conflicts appear where expected (in the wrapper productions) before adding the precedence declarations.
Why token fallback is not as simple as it looks
In theory, it would be possible to implement a feature similar to the one you suggest. [Note 1]
But it's non-trivial, because of the way the LALR parser construction algorithm combines states. The result is that the parser might not "know" that the lookahead token cannot be shifted until it has done one or more reductions. So by the time it figures out that the lookahead token is not valid, it has already performed reductions which would have to be undone in order to continue the parse without the lookahead token.
Most parser generators compound the problem by removing error actions corresponding to a lookahead token if the default action in the state for that token is a reduction. The effect is again to delay detection of the error until after one or more futile reductions, but it has the benefit of significantly reducing the size of the transition table (since default entries don't need to be stored explicitly). Since the delayed error will be detected before any more input is consumed, the delay is generally considered acceptable. (Bison has an option to prevent this optimisation, however.)
As a practical illustration, here's a very simple expression grammar with only two operators:
prog: expr '\n' | prog expr '\n'
expr: prod | expr '+' prod
prod: term | prod '*' term
term: ID | '(' expr ')'
That leads to this state diagram [Note 2]:
Let's suppose that we wanted to ignore newlines pythonically, allowing the input
(
a + b
)
That means that the parser must ignore the newline after the b, since the input might be
(
a + b
* c
)
(Which is fine in Python but not, if I understand correctly, in MAXScript.)
Of course, the newline would be recognised as a statement separator if the input were not parenthesized:
a + b
Looking at the state diagram, we can see that the parser will end up in State 15 after the b is read, whether or not the expression is parenthesized. In that state, a newline is marked as a valid lookahead for the reduction action, so the reduction action will be performed, presumably creating an AST node for the sum. Only after this reduction will the parser notice that there is no action for the newline. If it now discards the newline character, it's too late; there is now no way to reduce b * c in order to make it an operand of the sum.
Bison does allow you to request a Canonical LR parser, which does not combine states. As a result, the state machine is much, much bigger; so much so that Canonical-LR is still considered impractical for non-toy grammars. In the simple two-operator expression grammar above, asking for a Canonical LR parser only increases the state count from 16 to 26, as shown here:
In the Canonical LR parser, there are two different states for the reduction term: term '+' prod. State 16 applies at the top-level, and thus the lookahead includes newline but not ) Inside parentheses the parser will instead reach state 26, where ) is a valid lookahead but newline is not. So, at least in some grammars, using a Canonical LR parser could make the prediction more precise. But features which are dependent on the use of a mammoth parsing automaton are not particularly practical.
One alternative would be for the parser to react to the newline by first simulating the reduction actions to see if a shift would eventually succeed. If you request Lookahead Correction (%define parse.lac full), bison will insert code to do precisely this. This code can create significant overhead, but many people request it anyway because it makes verbose error messages more accurate. So it would certainly be possible to repurpose this code to do token fallback handling, but no-one has actually done so, as far as I know.
Notes:
A similar question which comes up from time to time is whether you can tell bison to cause a token to be reclassified to a fallback token if there is no possibility to shift the token. (That would be useful for parsing languages like SQL which have a lot of non-reserved keywords.)
I generated the state graphs using Bison's -g option:
bison -o ex.tab.c --report=all -g ex.y
dot -Tpng -oex.png ex.dot
To produce the Canonical LR, I defined lr.type to be canonical-lr:
bison -o ex_canon.c --report=all -g -Dlr.type=canonical-lr ex.y
dot -Tpng -oex_canon.png ex_canon.dot

YACC grammar for arithmetic expressions, with no surrounding parentheses

I want to write the rules for arithmetic expressions in YACC; where the following operations are defined:
+ - * / ()
But, I don't want the statement to have surrounding parentheses. That is, a+(b*c) should have a matching rule but (a+(b*c)) shouldn't.
How can I achieve this?
The motive:
In my grammar I define a set like this: (1,2,3,4) and I want (5) to be treated as a 1-element set. The ambiguity causes a reduce/reduce conflict.
Here's a pretty minimal arithmetic grammar. It handles the four operators you mention and assignment statements:
stmt: ID '=' expr ';'
expr: term | expr '-' term | expr '+' term
term: factor | term '*' factor | term '/' factor
factor: ID | NUMBER | '(' expr ')' | '-' factor
It's easy to define "set" literals:
set: '(' ')' | '(' expr_list ')'
expr_list: expr | expr_list ',' expr
If we assume that a set literal can only appear as the value in an assignment statement, and not as the operand of an arithmetic operator, then we would add a syntax for "expressions or set literals":
value: expr | set
and modify the syntax for assignment statements to use that:
stmt: ID '=' value ';'
But that leads to the reduce/reduce conflict you mention because (5) could be an expr, through the expansion expr → term → factor → '(' expr ')'.
Here are three solutions to this ambiguity:
1. Explicitly remove the ambiguity
Disambiguating is tedious but not particularly difficult; we just define two kinds of subexpression at each precedence level, one which is possibly parenthesized and one which is definitely not surrounded by parentheses. We start with some short-hand for a parenthesized expression:
paren: '(' expr ')'
and then for each subexpression type X, we add a production pp_X:
pp_term: term | paren
and modify the existing production by allowing possibly parenthesized subexpressions as operands:
term: factor | pp_term '*' pp_factor | pp_term '/' pp_factor
Unfortunately, we will still end up with a shift/reduce conflict, because of the way expr_list was defined. Confronted with the beginning of an assignment statement:
a = ( 5 )
having finished with the 5, so that ) is the lookahead token, the parser does not know whether the (5) is a set (in which case the next token will be a ;) or a paren (which is only valid if the next token is an operand). This is not an ambiguity -- the parse could be trivially resolved with an LR(2) parse table -- but there are not many tools which can generate LR(2) parsers. So we sidestep the issue by insisting that the expr_list has to have two expressions, and adding paren to the productions for set:
set: '(' ')' | paren | '(' expr_list ')'
expr_list: expr ',' expr | expr_list ',' expr
Now the parser doesn't need to choose between expr_list and expr in the assignment statement; it simply reduces (5) to paren and waits for the next token to clarify the parse.
So that ends up with:
stmt: ID '=' value ';'
value: expr | set
set: '(' ')' | paren | '(' expr_list ')'
expr_list: expr ',' expr | expr_list ',' expr
paren: '(' expr ')'
pp_expr: expr | paren
expr: term | pp_expr '-' pp_term | pp_expr '+' pp_term
pp_term: term | paren
term: factor | pp_term '*' pp_factor | pp_term '/' pp_factor
pp_factor: factor | paren
factor: ID | NUMBER | '-' pp_factor
which has no conflicts.
2. Use a GLR parser
Although it is possible to explicitly disambiguate, the resulting grammar is bloated and not really very clear, which is unfortunate.
Bison can generated GLR parsers, which would allow for a much simpler grammar. In fact, the original grammar would work almost without modification; we just need to use the Bison %dprec dynamic precedence declaration to indicate how to disambiguate:
%glr-parser
%%
stmt: ID '=' value ';'
value: expr %dprec 1
| set %dprec 2
expr: term | expr '-' term | expr '+' term
term: factor | term '*' factor | term '/' factor
factor: ID | NUMBER | '(' expr ')' | '-' factor
set: '(' ')' | '(' expr_list ')'
expr_list: expr | expr_list ',' expr
The %dprec declarations in the two productions for value tell the parser to prefer value: set if both productions are possible. (They have no effect in contexts in which only one production is possible.)
3. Fix the language
While it is possible to parse the language as specified, we might not be doing anyone any favours. There might even be complaints from people who are surprised when they change
a = ( some complicated expression ) * 2
to
a = ( some complicated expression )
and suddenly a becomes a set instead of a scalar.
It is often the case that languages for which the grammar is not obvious are also hard for humans to parse. (See, for example, C++'s "most vexing parse").
Python, which uses ( expression list ) to create tuple literals, takes a very simple approach: ( expression ) is always an expression, so a tuple needs to either be empty or contain at least one comma. To make the latter possible, Python allows a tuple literal to be written with a trailing comma; the trailing comma is optional unless the tuple contains a single element. So (5) is an expression, while (), (5,), (5,6) and (5,6,) are all tuples (the last two are semantically identical).
Python lists are written between square brackets; here, a trailing comma is again permitted, but it is never required because [5] is not ambiguous. So [], [5], [5,], [5,6] and [5,6,] are all lists.

Solving shift/reduce conflict in expression grammar

I am new to bison and I am trying to make a grammar parsing expressions.
I am facing a shift/reduce conflight right now I am not able to solve.
The grammar is the following:
%left "[" "("
%left "+"
%%
expression_list : expression_list "," expression
| expression
| /*empty*/
;
expression : "(" expression ")"
| STRING_LITERAL
| INTEGER_LITERAL
| DOUBLE_LITERAL
| expression "(" expression_list ")" /*function call*/
| expression "[" expression "]" /*index access*/
| expression "+" expression
;
This is my grammar, but I am facing a shift/reduce conflict with those two rules "(" expression ")" and expression "(" expression_list ")".
How can I resolve this conflict?
EDIT: I know I could solve this using precedence climbing, but I would like to not do so, because this is only a small part of the expression grammar, and the size of the expression grammar would explode using precedence climbing.
There is no shift-reduce conflict in the grammar as presented, so I suppose that it is just an excerpt of the full grammar. In particular, there will be precisely the shift/reduce conflict mentioned if the real grammar includes:
%start program
%%
program: %empty
| program expression
In that case, you will run into an ambiguity because given, for example, a(b), the parser cannot tell whether it is a single call-expression or two consecutive expressions, first a single variable, and second a parenthesized expression. To avoid this problem you need to have some token which separates expression (statements).
There are some other issues:
expression_list : expression_list "," expression
| expression
| /*empty*/
;
That allows an expression list to be ,foo (as in f(,foo)), which is likely not desirable. Better would be
arguments: %empty
| expr_list
expr_list: expr
| expr_list ',' expr
And the precedences are probably backwards. Usually one wants postfix operators like call and index to bind more tightly than arithmetic operators, so they should come at the end. Otherwise a+b(7) is (a+b)(7), which is unconventional.

How to define logical operator with parenthesis in ANTLR grammar

I am defining a grammar in ANTLR that will express an expression which includes logical operator and parenthesis together.
Here is the grammar
grammar simpleGrammar;
/* This will be the entry point of the parser. */
parse
:
expression EOF
;
expression
:
expression binOp expression | ID | unOp (expression) | '(' expression ')'
;
binOp
:
('AND' | 'OR')
;
unOp
:
'NOT'
;
ID :
('a'..'z' | 'A'..'Z')+
;
The defined grammar can able to express parse tree without parenthesis but when I input an example with parenthesis for example, (Apple OR Bananana)AND Orange
It is showing MismatchedTokenException
So, It will be really appreciated if someone explains how to define the grammar in order to express the parenthesis.
You forgot to tell ANTLR what to do with whitespace. For example:
WS : [ \t\r\n] -> skip;
Add this and you grammar will work.
As a side note, your grammar has the same precedence for the AND and OR operators. And these operators have higher precedence than NOT. As this goes against conventional rules, I'd advise you to write your expression rule like this instead:
expression
: '(' expression ')' # parenExp
| 'NOT' expression # notExpr
| expression 'AND' expression # andExpr
| expression 'OR' expression # orExpr
| ID # atomExpr
;

Reduce/reduce conflict in grammar

Let's imagine I want to be able to parse values like this (each line is a separate example):
x
(x)
((((x))))
x = x
(((x))) = x
(x) = ((x))
I've written this YACC grammar:
%%
Line: Binding | Expr
Binding: Pattern '=' Expr
Expr: Id | '(' Expr ')'
Pattern: Id | '(' Pattern ')'
Id: 'x'
But I get a reduce/reduce conflict:
$ bison example.y
example.y: warning: 1 reduce/reduce conflict [-Wconflicts-rr]
Any hint as to how to solve it? I am using GNU bison 3.0.2
Reduce/reduce conflicts often mean there is a fundamental problem in the grammar.
The first step in resolving is to get the output file (bison -v example.y produces example.output). Bison 2.3 says (in part):
state 7
4 Expr: Id .
6 Pattern: Id .
'=' reduce using rule 6 (Pattern)
')' reduce using rule 4 (Expr)
')' [reduce using rule 6 (Pattern)]
$default reduce using rule 4 (Expr)
The conflict is clear; after the grammar reads an x (and reduces that to an Id) and a ), it doesn't know whether to reduce the expression as an Expr or as a Pattern. That presents a problem.
I think you should rewrite the grammar without one of Expr and Pattern:
%%
Line: Binding | Expr
Binding: Expr '=' Expr
Expr: Id | '(' Expr ')'
Id: 'x'
Your grammar is not LR(k) for any k. So you either need to fix the grammar or use a GLR parser.
Suppose the input starts with:
(((((((((((((x
Up to here, there is no problem, because every character has been shifted onto the parser stack.
But now what? At the next step, x must be reduced and the lookahead is ). If there is an = somewhere in the future, x is a Pattern. Otherwise, it is an Expr.
You can fix the grammar by:
getting rid of Pattern and changing Binding to Expr | Expr '=' Expr;
getting rid of all the definitions of Expr and replacing them with Expr: Pattern
The second alternative is probably better in the long run, because it is likely that in the full grammar which you are imagining (or developing), Pattern is a subset of Expr, rather than being identical to Expr. Factoring Expr into a unit production for Pattern and the non-Pattern alternatives will allow you to parse the grammar with an LALR(1) parser (if the rest of the grammar conforms).
Or you can use a GLR grammar, as noted above.

Resources