Modeling arrows/relationships as nodes in Neo4j - neo4j

Relationship/Arrows in Neo4j can not get more than one type/label (see here, and here). I have a data model that edges need to get labels and (probably) properties. If I decide to use Neo4j (instead of OriendDB which supports labeled arrow), I think I would have then two options to model an arrow, say f, between two nodes A and B:
1) encode an arrow f as a span, say A<--f-->B, such that f is also a node and --> and <-- are arrows.
or
2) encode an arrow f as A --> f -->B, such that f is a node again and two --> are arrows.
Though this seems to be adding unnecessary complexity on my data model, it does not seem to be any other option at the moment if I want to use Neo4j. Then, I am trying to see which of the above encoding might fit better in my queries (queries are the core of my system). For doing so, I need to resort to examples. So I have two question:
First Question:
part1) I have nodes labeled as Person and father, and there are arrows between them like Person<-[:sr]-father-[:tr]->Person in order to model who is father of who (tr is father of sr). For a given person p1 how can I get all of his ancestors.
part2) If I had Person-[:sr]->father-[:tr]->Person structure instead, for modeling father relationship, how the above same query would look like.
This is answered here when father is considered as a simple relationship (instead of being encoded as a node)
Second Question:
part1) I have nodes labeled as A nodes with the property p1 for each. I want to query A nodes, get those elements that p1<5, then create the following structure: for each a1 in the query result I create qa1<-[:sr]-isA-[:tr]->a1 such that isA and qa1 are nodes.
part2) What if I wanted to create qa1-[:sr]->isA-[:tr]->qa1 instead?
This question is answered here when isA is considered as a simple arrow (instead of being modeled as a node).

First, some terminology; relationships don't have labels, they only have types. And yes, one type per relationship.
Second, relative to modeling, I think the direction of the relationship isn't always super important, since with neo4j you can traverse it both ways easily. So the difference between A-->f-->B and A<--f-->B I think should be entirely driven what what makes sense semantically for your domain, nothing else. So your options (1) and (2) at the top seem the same to me in terms of overall complexity, which brings me to point #3:
Your main choice is between making a complex relationship into a node (which I think we're calling f here) or keeping it as a relationship. Making "a relationship into a node" is called reification and I think it's considered a fairly standard practice to accommodate a number of modeling issues. It does add complexity (over a simple relationship) but adds flexibility. That's a pretty standard engineering tradeoff everywhere.
So with all of that said, for your first question I wouldn't recommend an intermediate node at all. :father is a very simple relationship, and I don't see why you'd ever need more than one label on it. So for question one, I would pick "neither of the options you list" and would instead model it as (personA)-[:father]->(personB). More simple. You'd query that by saying
MATCH (personA { name: "Bob"})-[:father]->(bobsDad) RETURN bobsDad
Yes, you could model this as (personA)-[:sr]->(fatherhood)-[:tr]->(personB) but I don't see how this gains you much. As for the relationship direction, again it doesn't matter for performance or query, only for semantics of whatever :tr and :sr are supposed to mean.
I have nodes labeled as A nodes with the property p1 for each. I want
to query A nodes, get those elements that p1<5, then create the
following structure: for each a1 in the query result I create
qa1<-[:sr]-isA-[:tr]->a1 such that isA and qa1 are nodes.
That's this:
MATCH (aNode:A)
WHERE aNode.p1 < 5
WITH aNode
MATCH (qa1 { label: "some qa1 node" })
CREATE (qa1)<-[:sr]-(isA)-[:tr]->aNode;
Note that you'll need to adjust the criteria for qa1 and also specify something meaningful for isA.
What if I wanted to create qa1-[:sr]->isA-[:tr]->qa1 instead?
It should be trivial to modify that query above, just change the direction of the arrows, same query.

Related

How can I mitigate having bidirectional relationships in a family tree, in Neo4j?

I am running into this wall regarding bidirectional relationships.
Say I am attempting to create a graph that represents a family tree. The problem here is that:
* Timmy can be Suzie's brother, but
* Suzie can not be Timmy's brother.
Thus, it becomes necessary to model this in 2 directions:
(Sure, technically I could say SIBLING_TO and leave only one edge...what I'm not sure what the vocabulary is when I try to connect a grandma to a grandson.)
When it's all said and done, I pretty sure there's no way around the fact that the direction matters in this example.
I was reading this blog post, regarding common Neo4j mistakes. The author states that this bidirectionality is not the most efficient way to model data in Neo4j and should be avoided.
And I am starting to agree. I set up a mock set of 2 families:
and I found that a lot of queries I was attempting to run were going very, very slow. This is because of the 'all connected to all' nature of the graph, at least within each respective family.
My question is this:
1) Am I correct to say that bidirectionality is not ideal?
2) If so, is my example of a family tree representable in any other way...and what is the 'best practice' in the many situations where my problem may occur?
3) If it is not possible to represent the family tree in another way, is it technically possible to still write queries in some manner that gets around the problem of 1) ?
Thanks for reading this and for your thoughts.
Storing redundant information (your bidirectional relationships) in a DB is never a good idea. Here is a better way to represent a family tree.
To indicate "siblingness", you only need a single relationship type, say SIBLING_OF, and you only need to have a single such relationship between 2 sibling nodes.
To indicate ancestry, you only need a single relationship type, say CHILD_OF, and you only need to have a single such relationship between a child to each of its parents.
You should also have a node label for each person, say Person. And each person should have a unique ID property (say, id), and some sort of property indicating gender (say, a boolean isMale).
With this very simple data model, here are some sample queries:
To find Person 123's sisters (note that the pattern does not specify a relationship direction):
MATCH (p:Person {id: 123})-[:SIBLING_OF]-(sister:Person {isMale: false})
RETURN sister;
To find Person 123's grandfathers (note that this pattern specifies that matching paths must have a depth of 2):
MATCH (p:Person {id: 123})-[:CHILD_OF*2..2]->(gf:Person {isMale: true})
RETURN gf;
To find Person 123's great-grandchildren:
MATCH (p:Person {id: 123})<-[:CHILD_OF*3..3]-(ggc:Person)
RETURN ggc;
To find Person 123's maternal uncles:
MATCH (p:Person {id: 123})-[:CHILD_OF]->(:Person {isMale: false})-[:SIBLING_OF]-(maternalUncle:Person {isMale: true})
RETURN maternalUncle;
I'm not sure if you are aware that it's possible to query bidirectionally (that is, to ignore the direction). So you can do:
MATCH (a)-[:SIBLING_OF]-(b)
and since I'm not matching a direction it will match both ways. This is how I would suggest modeling things.
Generally you only want to make multiple relationships if you actually want to store different state. For example a KNOWS relationship could only apply one way because person A might know person B, but B might not know A. Similarly, you might have a LIKES relationship with a value property showing how much A like B, and there might be different strengths of "liking" in the two directions

Neo4j labels and properties, and their differences

Say we have a Neo4j database with several 50,000 node subgraphs. Each subgraph has a root. I want to find all nodes in one subgraph.
One way would be to recursively walk the tree. It works but can be thousands of trips to the database.
One way is to add a subgraph identifier to each node:
MATCH(n {subgraph_id:{my_graph_id}}) return n
Another way would be to relate each node in a subgraph to the subgraph's root:
MATCH(n)-[]->(root:ROOT {id: {my_graph_id}}) return n
This feels more "graphy" if that matters. Seems expensive.
Or, I could add a label to each node. If {my_graph_id} was "BOBS_QA_COPY" then
MATCH(n:BOBS_QA_COPY) return n
would scoop up all the nodes in the subgraph.
My question is when is it appropriate to use a garden-variety property, add relationships, or set a label?
Setting a label to identify a particular subgraph makes me feel weird, like I am abusing the tool. I expect labels to say what something is, not which instance of something it is.
For example, if we were graphing car information, I could see having parts labeled "FORD EXPLORER". But I am less sure that it would make sense to have parts labeled "TONYS FORD EXPLORER". Now, I could see (USER id:"Tony") having a relationship to a FORD EXPLORER graph...
I may be having a bout of "SQL brain"...
Let's work this through, step by step.
If there are N non-root nodes, adding an extra N ROOT relationships makes the least sense. It is very expensive in storage, it will pollute the data model with relationships that don't need to be there and that can unnecessarily complicate queries that want to traverse paths, and it is not the fastest way to find all the nodes in a subgraph.
Adding a subgraph ID property to every node is also expensive in storage (but less so), and would require either: (a) scanning every node to find all the nodes with a specific ID (slow), or (b) using an index, say, :Node(subgraph_id) (faster). Approach (b), which is preferable, would also require that all the nodes have the same Node label.
But wait, if approach 2(b) already requires all nodes to be labelled, why don't we just use a different label for each subgroup? By doing that, we don't need the subgraph_id property at all, and we don't need an index either! And finding all the nodes with the same label is fast.
Thus, using a per-subgroup label would be the best option.

Is there a benefit to implementing singletons in Neo?

My business requirement says I need to add an arbitrary number of well-defined (AKA not dynamic, not unknown) attributes to certain types of nodes. I am pretty sure that while there could be 30 or 40 different attributes, a node will probably have no more than 4 or 5 of them. Of course there will be corner cases...
In this context, I am generically using 'attribute' as a tag wanted by the business, and not in the Neo4J sense.
I'll be expected to report on which nodes have which attributes. For example, I might have to report on which nodes have the "detention", "suspension", or "double secret probation" attributes.
One way is to simply have an array of appropriate attributes on each entity. But each query would require a search of all nodes. Or, I could create explicit attributes on each node. Now they could be indexed. I'm not seriously considering either of these approaches.
Another way is to implement each attribute as a singleton Neo node, and allow many (tens of thousands?) of other nodes to relate to these nodes. This implementation would have 10,000 nodes but 40,000 relationships.
Finally, the attribute nodes could be created and used by specific entity nodes on an as-needed basis. In this case, if 10,000 entities had an average of 4 attributes, I'd have a total of 50,000 nodes.
As I type this, I realize that in the 2nd case, I still have 40,000 relationships; the 'truth' of the situation did not change.
Is there a reason to avoid the 'singleton' implementation? I could put timestamps on the relationships. But those wouldn't be indexed...
For your simple use case, I'd suggest an approach you didn't list -- which is to use a node label for each "attribute".
Nodes can have multiple labels, and neo4j can quickly iterate through all the nodes with the same label -- making it very quick and easy to find all the nodes with a specific label.
For example:
MATCH (n:Detention)
RETURN n;

Neo4j graph modelling performance and querability, property to a node or as separate node plus relationship

I am teaching myself graph modelling and use Neo4j 2.2.3 database with NodeJs and Express framework.
I have skimmed through the free neo4j graph database book and learned how to model a scenario, when to use relationship and when to create nodes, etc.
I have modelled a vehicle selling scenario, with following structure
NODES
(:VEHICLE{mileage:xxx, manufacture_year: xxxx, price: xxxx})
(:VFUEL_TYPE{type:xxxx}) x 2 (one for diesel and one for petrol)
(:VCOLOR{color:xxxx}) x 8 (red, green, blue, .... yellow)
(:VGEARBOX{type:xxx}) x 2 (AUTO, MANUAL)
RELATIONSHIPS
(vehicleNode)-[:VHAVE_COLOR]->(colorNode - either of the colors)
(vehicleNode)-[:VGEARBOX_IS]->(gearboxNode - either manual or auto)
(vehicleNode)-[:VCONSUMES_FUEL_TYPE]->(fuelNode - either diesel or petrol)
Assuming we have the above structure and so on for the rest of the features.
As shown in the above screenshot (136 & 137 are VEHICLE nodes), majority of the features of a vehicle is created as separate nodes and shared among vehicles with common feature with relationships.
Could you please advise whether roles (labels) like color, body type, driving side (left drive or right drive), gearbox and others should be seperate nodes or properties of vehicle node? Which option is more performance friendly, and easy to query?
I want to write a JS code that allows querying the graph with above structure with one or many search criteria. If majority of those features are properties of VEHICLE node then querying would not be difficult:
MATCH (v:VEHICLE) WHERE v.gearbox = "MANUAL" AND v.fuel_type = "PETROL" AND v.price > x AND v.price < y AND .... RETURN v;
However with existing graph model that I have it is tricky to search, specially when there are multiple criteria that are not necessarily a properties of VEHICLE node but separate nodes and linked via relationship.
Any ideas and advise in regards to existing structure of the graph to make it more query-able as well as performance friendly would be much appreciated. If we imagine a scenario with 1000 VEHICLE nodes that would generate 15000 relationship, sounds a bit scary and if it hits a million VEHICLE then at most 15 million relationships. Please comment if I am heading in the wrong direction.
Thank you for your time.
Modeling is full of tradeoffs, it looks like you have a decent start.
Don't be concerned at all with the number of relationships. That's what graph databases are good at, so I wouldn't be too concerned about over-using them.
Should something be a property, or a node? I can't answer for your scenario, but here are some things to consider:
If you look something up by a value all the time, and you have many objects, it's usually going to be faster to find one node and then everything connected to it, because graph DBs are good at exploiting relationships. It's less fast to scan all nodes of a label and find the items where a property=a value.
Relationships work well when you want to express a connection to something that isn't a simple primitive data type. For example, take "gearbox". There's manuals, and other types...if it's a property value, you won't later easily be able to decide to store 4 other sub-types/sub-aspects of "gearbox". If it were a node, that would later be easy because you could add more properties to the node, or relate other things.
If a piece of data really is a primitive (String, integer, etc) and you don't need extra detail about it, that usually makes a good property. Querying primitive values by connecting to other nodes will seem clunky later on. For example, I wouldn't model a person with a "date of birth" as a separate node, that would be irritating to query, and would give you flexibility you'd be very unlikely to need in the future.
Semantically, how is your data related? If two items are similar because they share an X, then that X probably should be a node. If two items happen to have the same Y value but that doesn't really mean much, then Y is probably better off as a node property.

Why do relationships as a concept exist in neo4j or graph databases in general?

I can't seem to find any discussion on this. I had been imagining a database that was schemaless and node based and heirarchical, and one day I decided it was too common sense to not exist, so I started searching around and neo4j is about 95% of what I imagined.
What I didn't imagine was the concept of relationships. I don't understand why they are necessary. They seem to add a ton of complexity to all topics centered around graph databases, but I don't quite understand what the benefit is. Relationships seem to be almost exactly like nodes, except more limited.
To explain what I'm thinking, I was imagining starting a company, so I create myself as my first nodes:
create (u:User { u.name:"mindreader"});
create (c:Company { c.name:"mindreader Corp"});
One day I get a customer, so I put his company into my db.
create (c:Company { c.name:"Customer Company"});
create (u:User { u.name:"Customer Employee1" });
create (u:User { u.name:"Customer Employee2"});
I decide to link users to their customers
match (u:User) where u.name =~ "Customer.*"
match (c:Company) where c.name =~ "Customer.*
create (u)-[:Employee]->(c);
match (u:User where name = "mindreader"
match (c:Company) where name =~ "mindreader.*"
create (u)-[:Employee]->(c);
Then I hire some people:
match (c:Company) where c.name =~ "mindreader.*"
create (u:User { name:"Employee1"})-[:Employee]->(c)
create (u:User { name:"Employee2"})-[:Employee]->(c);
One day hr says they need to know when I hired employees. Okay:
match (c:Company)<-[r:Employee]-(u:User)
where name =~ "mindreader.*" and u.name =~ "Employee.*"
set r.hiredate = '2013-01-01';
Then hr comes back and says hey, we need to know which person in the company recruited a new employee so that they can get a cash reward for it.
Well now what I need is for a relationship to point to a user but that isn't allowed (:Hired_By relationship between :Employee relationship and a User). We could have an extra relationship :Hired_By, but if the :Employee relationship is ever deleted, the hired_by will remain unless someone remembers to delete it.
What I could have done in neo4j was just have a
(u:User)-[:hiring_info]->(hire_info:HiringInfo)-[:hired_by]->(u:User)
In which case the relationships only confer minimal information, the name.
What I originally envisioned was that there would be nodes, and then each property of a node could be a datatype or it could be a pointer to another node. In my case, a user record would end up looking like:
User {
name: "Employee1"
hiring_info: {
hire_date: "2013-01-01"
hired_by: u:User # -> would point to a user
}
}
Essentially it is still a graph. Nodes point to each other. The name of the relationship is just a field in the origin node. To query it you would just go
match (u:User) where ... return u.name, u.hiring_info.hiring_date, u.hiring_info.hired_by.name
If you needed a one to many relationship of the same type, you would just have a collection of pointers to nodes. If you referenced a collection in return, you'd get essentially a join. If you delete hiring_info, it would delete the pointer. References to other nodes would not have to be a disorganized list at the toplevel of a node. Furthermore when I query each user I will know all of the info about a user without both querying for the user itself and also all of its relationships. I would know his name and the fact that he hired someone in the same query. From the database backend, I'm not sure much would change.
I see quite a few questions from people asking whether they should use nodes or relationships to model this or that, and occasionally people asking for a relationship between relationships. It feels like the XML problem where you are wondering if a pieces of information should be its own tag or just a property its parent tag.
The query engine goes to great pains to handle relationships, so there must be some huge advantage to having them, but I can't quite see it.
Different databases are for different things. You seem to be looking for a noSQL database.
This is an extremely wide topic area that you've reached into, so I'll give you the short of it. There's a spectrum of database schemas, each of which have different use cases.
NoSQL aka Non-relational Databases:
Every object is a single document. You can have references to other documents, but any additional traversal means you're making another query. Times when you don't have relationships between your data very often, and are usually just going to want to query once and have a large amount of flexibly-stored data as the document that is returnedNote: These are not "nodes". Node have a very specific definition and implies that there are edges.)
SQL aka Relational Databases:
This is table land, this is where foreign keys and one-to-many relationships come into play. Here you have strict schemas and very fast queries. This is honestly what you should use for your user example. Small amounts of data where the relationships between things are shallow (You don't have to follow a relationship more than 1-2 times to get to the relevant entry) are where these excel.
Graph Database:
Use this when relationships are key to what you're trying to do. The most common example of a graph is something like a social graph where you're connecting different users together and need to follow relationships for many steps. (Figure out if two people are connected within a depth for 4 for instance)
Relationships exist in graph databases because that is the entire concept of a graph database. It doesn't really fit your application, but to be fair you could just keep more in the node part of your database. In general the whole idea of a database is something that lets you query a LOT of data very quickly. Depending on the intrinsic structure of your data there are different ways that that makes sense. Hence the different kinds of databases.
In strongly connected graphs, Neo4j is 1000x faster on 1000x the data than a SQL database. NoSQL would probably never be able to perform in a strongly connected graph scenario.
Take a look at what we're building right now: http://vimeo.com/81206025
Update: In reaction to mindreader's comment, we added the related properties to the picture:
RDBM systems are tabular and put more information in the tables than the relationships. Graph databases put more information in relationships. In the end, you can accomplish much the same goals.
However, putting more information in relationships can make queries smaller and faster.
Here's an example:
Graph databases are also good at storing human-readable knowledge representations, being edge (relationship) centric. RDF takes it one step further were all information is stored as edges rather than nodes. This is ideal for working with predicate logic, propositional calculus, and triples.
Maybe the right answer is an object database.
Objectivity/DB, which now supports a full suite of graph database capabilities, allows you to design complex schema with one-to-one, one-to-many, many-to-one, and many-to-many reference attributes. It has the semantics to view objects as graph nodes and edges. An edge can be just the reference attribute from one node to another or an edge can exist as an edge object that sits between two nodes.
An edge object can have any number of attribute and can have references off to other objects, as shown in the diagram below.
Being able to "hang" complex objects off of an edge allows Objectivity/DB to support weighted queries where the edge-weight can be calculated using a user-defined weight calculator operator. The weight calculator operator can build the weight from a static attribute on the edge or build the weight by digging down through the objects connected to the edge. In the picture, above, we could create a edge-weight calculator that computes the sum of the CallDetail lengths connected to the Call edge.

Resources