I have two Vec3b images and I want to find the MSE (Mean Square Error) between them. I know how to do it when you have two uchar images, but when you have two Vec3b images where there are 3 different values stored for each pixel how do you calculate it?
You should compute the Euclidean distance for each pair of pixels:
MSE = 0;
for(int i = 0; i < width; i++)
for(int j = 0; j < height; j++)
MSE += sqrt(pow(img1.at<Vec3b>(j, i)[0] - img2.at<Vec3b>(j, i)[0]), 2) + pow(img1.at<Vec3b>(j, i)[1] - img2.at<Vec3b>(j, i)[1]), 2) + pow(img1.at<Vec3b>(j, i)[2] - img2.at<Vec3b>(j, i)[2]), 2));
MSE /= width * height;
This code can be optimized and if you convert your image from BGR to HSV, you could get better results according what you want to do.
To calculate the Mean Square Error for 1D and 3D images in opencv, you can use this post which might be faster since image scanning takes longer times.
double getMSE(Mat& I1, Mat& I2)
{
Mat s1;
// save the I! and I2 type before converting to float
int im1type = I1.type();
int im2type = I2.type();
// convert to float to avoid producing zero for negative numbers
I1.convertTo(I1, CV_32F);
I2.convertTo(I2, CV_32F);
absdiff(I1, I2, s1); // |I1 - I2|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1); // |I1 - I2|^2
Scalar s = sum(s1); // sum elements per channel
double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
if( sse <= 1e-10) // for small values return zero
return 0;
else
{
double mse =sse /(double)(I1.channels() * I1.total());
return mse;
// Instead of returning MSE, the tutorial code returned PSNR (below).
//double psnr = 10.0*log10((255*255)/mse);
//return psnr;
}
// return I1 and I2 to their initial types
I1.convertTo(I1, im1type);
I2.convertTo(I2, im2type);
}
The above code returns zero for small mse values (under 1e-10). Terms s.val1 and s.val[2] are zero for 1D images.
If you want to check for 1D image input, use the following code to test (with random unsigned numbers):
Mat I1(12, 12, CV_8UC1), I2(12, 12, CV_8UC1);
double low = 0;
double high = 255;
cv::randu(I1, Scalar(low), Scalar(high));
cv::randu(I2, Scalar(low), Scalar(high));
double mse = getMSE(I1, I2);
cout << mse << endl;
If you want to check for 3D image input, use the following code to test (with random unsigned numbers):
Mat I1(12, 12, CV_8UC3), I2(12, 12, CV_8UC3);
double low = 0;
double high = 255;
cv::randu(I1, Scalar(low), Scalar(high));
cv::randu(I2, Scalar(low), Scalar(high));
double mse = getMSE(I1, I2);
cout << mse << endl;
Related
I have implemented Sobel operator in vertical direction. But the result which I am getting is very poor. I have attached my code below.
int mask_size= 3;
char mask [3][3]= {{-1,0,1},{-2,0,2},{-1,0,1}};
void sobel(Mat input_image)
{
/**Padding m-1 and n-1 zeroes to the result where m and n are mask_size**/
Mat result=Mat::zeros(input_image.rows+(mask_size - 1) * 2,input_image.cols+(mask_size - 1) * 2,CV_8UC1);
Mat result1=Mat::zeros(result.rows,result.cols,CV_8UC1);
int sum= 0;
/*For loop for copying original values to new padded image **/
for(int i=0;i<input_image.rows;i++)
for(int j=0;j<input_image.cols;j++)
result.at<uchar>(i+(mask_size-1),j+(mask_size-1))=input_image.at<uchar>(i,j);
GaussianBlur( result, result, Size(5,5), 0, 0, BORDER_DEFAULT );
/**For loop to implement the convolution **/
for(int i=0;i<result.rows-(mask_size - 1);i++)
for(int j=0;j<result.cols-(mask_size - 1);j++)
{
int counter=0;
int counterX=0,counterY=0;
sum= 0;
for(int k= i ; k < i + mask_size ; k++)
{
for(int l= j ; l< j + mask_size ; l++)
{
sum+=result.at<uchar>(k,l) * mask[counterX][counterY];
counterY++;
}
counterY=0;
counterX++;
}
result1.at<uchar>(i+mask_size/2,j+mask_size/2)=sum/(mask_size * mask_size);
}
/** Truncating all the extras rows and columns **/
result=Mat::zeros( result1.rows - (mask_size - 1) * 2, result1.cols - (mask_size - 1) * 2,CV_8UC1);
for(int i=0;i<result.rows;i++)
for(int j=0;j<result.cols;j++)
result.at<uchar>(i,j)=result1.at<uchar>(i+(mask_size - 1),j+(mask_size - 1));
imshow("Input",result);
imwrite("output2.tif",result);
}
My input to the algorithm is
My output is
I have also tried using Gaussian blur before actually convolving an image and the output I got is
The output which I am expecting is
The guide I am using is: https://www.tutorialspoint.com/dip/sobel_operator.htm
Your convolution looks ok although I only had a quick look.
Check your output type. It's unsigned char.
Now think about the values your output pixels may have if you have negative kernel values and if it is a good idea to store them in uchar directly.
If you store -1 in an unsigned char it will be wrapped around and your output is 255. In case you're wondering where all that excess white stuff is coming from. That's actually small negative gradients.
The desired result looks like the absolute of the Sobel output values.
I'm trying to run the kmeans algorithm on a n-dimensional data.
I Have N points and each point have { x, y, z, ... , n } features.
my code is the following:
cv::Mat points(N, n, CV_32F);
// fill the data points
cv::Mat labels; cv::Mat centers;
cv::kmeans(points, k, labels, cv::TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 1000, 0.001), 10, cv::KMEANS_PP_CENTERS, centers);
the problem is that the kmeans algorithm run into a segmentation fault.
any help is appreciated
update
How Miki and Micka said the above code was correct!
I had made a mistake in the "fill the data points" so that I corrupts the memory
The code looks ok. You have to choose the data as 1 dimension per column.
Can you try to run this example?
// k-means
int main(int argc, char* argv[])
{
cv::Mat projectedPointsImage = cv::Mat(512, 512, CV_8UC3, cv::Scalar::all(255));
int nReferenceCluster = 10;
int nSamplesPerCluster = 100;
int N = nReferenceCluster*nSamplesPerCluster; // number of samples
int n = 10; // dimensionality of data
// fill the data points
// create n artificial clusters and randomly seed 100 points around them
cv::Mat referenceCenters(nReferenceCluster, n, CV_32FC1);
//std::cout << referenceCenters << std::endl;
cv::randu(referenceCenters, cv::Scalar::all(0), cv::Scalar::all(512));
//std::cout << "FILLED:" << "\n" << referenceCenters << std::endl;
cv::Mat points = cv::Mat::zeros(N, n, CV_32FC1);
cv::randu(points, cv::Scalar::all(-20), cv::Scalar::all(20)); // seed points around the center
for (int j = 0; j < nReferenceCluster; ++j)
{
cv::Scalar clusterColor = cv::Scalar(rand() % 255, rand() % 255, rand() % 255);
//cv::Mat & clusterCenter = referenceCenters.row(j);
for (int i = 0; i < nSamplesPerCluster; ++i)
{
// creating a sample randomly around the artificial cluster:
int index = j*nSamplesPerCluster + i;
//samplesRow += clusterCenter;
for (int k = 0; k < points.cols; ++k)
{
points.at<float>(index, k) += referenceCenters.at<float>(j, k);
}
// projecting the 10 dimensional clusters to 2 dimensions:
cv::circle(projectedPointsImage, cv::Point(points.at<float>(index, 0), points.at<float>(index, 1)), 2, clusterColor, -1);
}
}
cv::Mat labels; cv::Mat centers;
int k = 10; // searched clusters in k-means
cv::kmeans(points, k, labels, cv::TermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 1000, 0.001), 10, cv::KMEANS_PP_CENTERS, centers);
for (int j = 0; j < centers.rows; ++j)
{
std::cout << centers.row(j) << std::endl;
cv::circle(projectedPointsImage, cv::Point(centers.at<float>(j, 0), centers.at<float>(j, 1)), 30, cv::Scalar::all(0), 2);
}
cv::imshow("projected points", projectedPointsImage);
cv::imwrite("C:/StackOverflow/Output/KMeans.png", projectedPointsImage);
cv::waitKey(0);
return 0;
}
I'm creating 10-dimensional data around artificial cluster centers there. For displaying I project them to 2D, getting this result:
I have searched internet and stackoverflow thoroughly, but I haven't found answer to my question:
How can I get/set (both) RGB value of certain (given by x,y coordinates) pixel in OpenCV? What's important-I'm writing in C++, the image is stored in cv::Mat variable. I know there is an IplImage() operator, but IplImage is not very comfortable in use-as far as I know it comes from C API.
Yes, I'm aware that there was already this Pixel access in OpenCV 2.2 thread, but it was only about black and white bitmaps.
EDIT:
Thank you very much for all your answers. I see there are many ways to get/set RGB value of pixel. I got one more idea from my close friend-thanks Benny! It's very simple and effective. I think it's a matter of taste which one you choose.
Mat image;
(...)
Point3_<uchar>* p = image.ptr<Point3_<uchar> >(y,x);
And then you can read/write RGB values with:
p->x //B
p->y //G
p->z //R
Try the following:
cv::Mat image = ...do some stuff...;
image.at<cv::Vec3b>(y,x); gives you the RGB (it might be ordered as BGR) vector of type cv::Vec3b
image.at<cv::Vec3b>(y,x)[0] = newval[0];
image.at<cv::Vec3b>(y,x)[1] = newval[1];
image.at<cv::Vec3b>(y,x)[2] = newval[2];
The low-level way would be to access the matrix data directly. In an RGB image (which I believe OpenCV typically stores as BGR), and assuming your cv::Mat variable is called frame, you could get the blue value at location (x, y) (from the top left) this way:
frame.data[frame.channels()*(frame.cols*y + x)];
Likewise, to get B, G, and R:
uchar b = frame.data[frame.channels()*(frame.cols*y + x) + 0];
uchar g = frame.data[frame.channels()*(frame.cols*y + x) + 1];
uchar r = frame.data[frame.channels()*(frame.cols*y + x) + 2];
Note that this code assumes the stride is equal to the width of the image.
A piece of code is easier for people who have such problem. I share my code and you can use it directly. Please note that OpenCV store pixels as BGR.
cv::Mat vImage_;
if(src_)
{
cv::Vec3f vec_;
for(int i = 0; i < vHeight_; i++)
for(int j = 0; j < vWidth_; j++)
{
vec_ = cv::Vec3f((*src_)[0]/255.0, (*src_)[1]/255.0, (*src_)[2]/255.0);//Please note that OpenCV store pixels as BGR.
vImage_.at<cv::Vec3f>(vHeight_-1-i, j) = vec_;
++src_;
}
}
if(! vImage_.data ) // Check for invalid input
printf("failed to read image by OpenCV.");
else
{
cv::namedWindow( windowName_, CV_WINDOW_AUTOSIZE);
cv::imshow( windowName_, vImage_); // Show the image.
}
The current version allows the cv::Mat::at function to handle 3 dimensions. So for a Mat object m, m.at<uchar>(0,0,0) should work.
uchar * value = img2.data; //Pointer to the first pixel data ,it's return array in all values
int r = 2;
for (size_t i = 0; i < img2.cols* (img2.rows * img2.channels()); i++)
{
if (r > 2) r = 0;
if (r == 0) value[i] = 0;
if (r == 1)value[i] = 0;
if (r == 2)value[i] = 255;
r++;
}
const double pi = boost::math::constants::pi<double>();
cv::Mat distance2ellipse(cv::Mat image, cv::RotatedRect ellipse){
float distance = 2.0f;
float angle = ellipse.angle;
cv::Point ellipse_center = ellipse.center;
float major_axis = ellipse.size.width/2;
float minor_axis = ellipse.size.height/2;
cv::Point pixel;
float a,b,c,d;
for(int x = 0; x < image.cols; x++)
{
for(int y = 0; y < image.rows; y++)
{
auto u = cos(angle*pi/180)*(x-ellipse_center.x) + sin(angle*pi/180)*(y-ellipse_center.y);
auto v = -sin(angle*pi/180)*(x-ellipse_center.x) + cos(angle*pi/180)*(y-ellipse_center.y);
distance = (u/major_axis)*(u/major_axis) + (v/minor_axis)*(v/minor_axis);
if(distance<=1)
{
image.at<cv::Vec3b>(y,x)[1] = 255;
}
}
}
return image;
}
as input data I have a 24 bit RGB image and a palette with 2..20 fixed colours. These colours are in no way spread regularly over the full colour range.
Now I have to modify the colours of input image so that only the colours of the given palette are used - using the colour out of the palette that is closest to the original colour (not closest mathematically but for human's visual impression). So what I need is an algorithm that uses an input colour and finds the colour in target palette that visually fits best to this colour. Please note: I'm not looking for a stupid comparison/difference algorithm but for something that really incorporates the impression a colour has on humans!
Since this is something that already should have been done and because I do not want to re-invent the wheel again: is there some example source code out there that does this job? In best case it is really a piece of code and not a link to a desastrous huge library ;-)
(I'd guess OpenCV does not provide such a function?)
Thanks
You should look at the Lab color space. It was designed so that the distance in the colour space equals the perceptual distance. So once you have converted your image you can compute the distances as you would have done earlier, but should get a better result from a perceptual point of view. In OpenCV you can use the cvtColor(source, destination, CV_BGR2Lab) function.
Another Idea would be to use dithering. The idea is to mix missing colours using neighbouring pixels. A popular algorithm for this is Floyd-Steinberg dithering.
Here is an example of mine, where I combined a optimized palette using k-means with the Lab colourspace and floyd steinberg dithering:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
cv::Mat floydSteinberg(cv::Mat img, cv::Mat palette);
cv::Vec3b findClosestPaletteColor(cv::Vec3b color, cv::Mat palette);
int main(int argc, char** argv)
{
// Number of clusters (colors on result image)
int nrColors = 18;
cv::Mat imgBGR = imread(argv[1],1);
cv::Mat img;
cvtColor(imgBGR, img, CV_BGR2Lab);
cv::Mat colVec = img.reshape(1, img.rows*img.cols); // change to a Nx3 column vector
cv::Mat colVecD;
colVec.convertTo(colVecD, CV_32FC3, 1.0); // convert to floating point
cv::Mat labels, centers;
cv::kmeans(colVecD, nrColors, labels,
cv::TermCriteria(CV_TERMCRIT_ITER, 100, 0.1),
3, cv::KMEANS_PP_CENTERS, centers); // compute k mean centers
// replace pixels by there corresponding image centers
cv::Mat imgPosterized = img.clone();
for(int i = 0; i < img.rows; i++ )
for(int j = 0; j < img.cols; j++ )
for(int k = 0; k < 3; k++)
imgPosterized.at<Vec3b>(i,j)[k] = centers.at<float>(labels.at<int>(j+img.cols*i),k);
// convert palette back to uchar
cv::Mat palette;
centers.convertTo(palette,CV_8UC3,1.0);
// call floyd steinberg dithering algorithm
cv::Mat fs = floydSteinberg(img, palette);
cv::Mat imgPosterizedBGR, fsBGR;
cvtColor(imgPosterized, imgPosterizedBGR, CV_Lab2BGR);
cvtColor(fs, fsBGR, CV_Lab2BGR);
imshow("input",imgBGR); // original image
imshow("result",imgPosterizedBGR); // posterized image
imshow("fs",fsBGR); // floyd steinberg dithering
waitKey();
return 0;
}
cv::Mat floydSteinberg(cv::Mat imgOrig, cv::Mat palette)
{
cv::Mat img = imgOrig.clone();
cv::Mat resImg = img.clone();
for(int i = 0; i < img.rows; i++ )
for(int j = 0; j < img.cols; j++ )
{
cv::Vec3b newpixel = findClosestPaletteColor(img.at<Vec3b>(i,j), palette);
resImg.at<Vec3b>(i,j) = newpixel;
for(int k=0;k<3;k++)
{
int quant_error = (int)img.at<Vec3b>(i,j)[k] - newpixel[k];
if(i+1<img.rows)
img.at<Vec3b>(i+1,j)[k] = min(255,max(0,(int)img.at<Vec3b>(i+1,j)[k] + (7 * quant_error) / 16));
if(i-1 > 0 && j+1 < img.cols)
img.at<Vec3b>(i-1,j+1)[k] = min(255,max(0,(int)img.at<Vec3b>(i-1,j+1)[k] + (3 * quant_error) / 16));
if(j+1 < img.cols)
img.at<Vec3b>(i,j+1)[k] = min(255,max(0,(int)img.at<Vec3b>(i,j+1)[k] + (5 * quant_error) / 16));
if(i+1 < img.rows && j+1 < img.cols)
img.at<Vec3b>(i+1,j+1)[k] = min(255,max(0,(int)img.at<Vec3b>(i+1,j+1)[k] + (1 * quant_error) / 16));
}
}
return resImg;
}
float vec3bDist(cv::Vec3b a, cv::Vec3b b)
{
return sqrt( pow((float)a[0]-b[0],2) + pow((float)a[1]-b[1],2) + pow((float)a[2]-b[2],2) );
}
cv::Vec3b findClosestPaletteColor(cv::Vec3b color, cv::Mat palette)
{
int i=0;
int minI = 0;
cv::Vec3b diff = color - palette.at<Vec3b>(0);
float minDistance = vec3bDist(color, palette.at<Vec3b>(0));
for (int i=0;i<palette.rows;i++)
{
float distance = vec3bDist(color, palette.at<Vec3b>(i));
if (distance < minDistance)
{
minDistance = distance;
minI = i;
}
}
return palette.at<Vec3b>(minI);
}
Try this algorithm (it will reduct color number, but it compute palette by itself):
#include <opencv2/opencv.hpp>
#include "opencv2/legacy/legacy.hpp"
#include <vector>
#include <list>
#include <iostream>
using namespace cv;
using namespace std;
void main(void)
{
// Number of clusters (colors on result image)
int NrGMMComponents = 32;
// Source file name
string fname="D:\\ImagesForTest\\tools.jpg";
cv::Mat SampleImg = imread(fname,1);
//cv::GaussianBlur(SampleImg,SampleImg,Size(5,5),3);
int SampleImgHeight = SampleImg.rows;
int SampleImgWidth = SampleImg.cols;
// Pick datapoints
vector<Vec3d> ListSamplePoints;
for (int y=0; y<SampleImgHeight; y++)
{
for (int x=0; x<SampleImgWidth; x++)
{
// Get pixel color at that position
Vec3b bgrPixel = SampleImg.at<Vec3b>(y, x);
uchar b = bgrPixel.val[0];
uchar g = bgrPixel.val[1];
uchar r = bgrPixel.val[2];
if(rand()%25==0) // Pick not every, bu t every 25-th
{
ListSamplePoints.push_back(Vec3d(b,g,r));
}
} // for (x)
} // for (y)
// Form training matrix
Mat labels;
int NrSamples = ListSamplePoints.size();
Mat samples( NrSamples, 3, CV_32FC1 );
for (int s=0; s<NrSamples; s++)
{
Vec3d v = ListSamplePoints.at(s);
samples.at<float>(s,0) = (float) v[0];
samples.at<float>(s,1) = (float) v[1];
samples.at<float>(s,2) = (float) v[2];
}
cout << "Learning to represent the sample distributions with" << NrGMMComponents << "gaussians." << endl;
// Algorithm parameters
CvEMParams params;
params.covs = NULL;
params.means = NULL;
params.weights = NULL;
params.probs = NULL;
params.nclusters = NrGMMComponents;
params.cov_mat_type = CvEM::COV_MAT_GENERIC; // DIAGONAL, GENERIC, SPHERICAL
params.start_step = CvEM::START_AUTO_STEP;
params.term_crit.max_iter = 1500;
params.term_crit.epsilon = 0.001;
params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
//params.term_crit.type = CV_TERMCRIT_ITER;
// Train
cout << "Started GMM training" << endl;
CvEM em_model;
em_model.train( samples, Mat(), params, &labels );
cout << "Finished GMM training" << endl;
// Result image
Mat img = Mat::zeros( Size( SampleImgWidth, SampleImgHeight ), CV_8UC3 );
// Ask classifier for each pixel
Mat sample( 1, 3, CV_32FC1 );
Mat means;
means=em_model.getMeans();
for(int i = 0; i < img.rows; i++ )
{
for(int j = 0; j < img.cols; j++ )
{
Vec3b v=SampleImg.at<Vec3b>(i,j);
sample.at<float>(0,0) = (float) v[0];
sample.at<float>(0,1) = (float) v[1];
sample.at<float>(0,2) = (float) v[2];
int response = cvRound(em_model.predict( sample ));
img.at<Vec3b>(i,j)[0]=means.at<double>(response,0);
img.at<Vec3b>(i,j)[1]=means.at<double>(response,1);
img.at<Vec3b>(i,j)[2]=means.at<double>(response,2);
}
}
img.convertTo(img,CV_8UC3);
imshow("result",img);
waitKey();
// Save the result
cv::imwrite("result.png", img);
}
PS: For perceptive color distance measurement it's better to use L*a*b color space. There is converter in opencv for this purpose. For clustering you can use k-means with defined cluster centers (your palette entries). After clustering you'll get points with indexes of palette intries.
This question is specific to opencv:
The kmeans example given in the opencv documentation has a 2-channel matrix - one channel for each dimension of the feature vector. But, some of the other example seem to say that it should be a one channel matrix with features along the columns with one row for each sample. Which of these is right?
if I have a 5 dimensional feature vector, what should be the input matrix that I use:
This one:
cv::Mat inputSamples(numSamples, 1, CV32FC(numFeatures))
or this one:
cv::Mat inputSamples(numSamples, numFeatures, CV_32F)
The correct answer is cv::Mat inputSamples(numSamples, numFeatures, CV_32F).
The OpenCV Documentation about kmeans says:
samples – Floating-point matrix of input samples, one row per sample
So it is not a Floating-point vector of n-Dimensional floats as in the other option. Which examples suggested such a behaviour?
Here is also a small example by me that shows how kmeans can be used. It clusters the pixels of an image and displays the result:
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
int main( int argc, char** argv )
{
Mat src = imread( argv[1], 1 );
Mat samples(src.rows * src.cols, 3, CV_32F);
for( int y = 0; y < src.rows; y++ )
for( int x = 0; x < src.cols; x++ )
for( int z = 0; z < 3; z++)
samples.at<float>(y + x*src.rows, z) = src.at<Vec3b>(y,x)[z];
int clusterCount = 15;
Mat labels;
int attempts = 5;
Mat centers;
kmeans(samples, clusterCount, labels, TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10000, 0.0001), attempts, KMEANS_PP_CENTERS, centers );
Mat new_image( src.size(), src.type() );
for( int y = 0; y < src.rows; y++ )
for( int x = 0; x < src.cols; x++ )
{
int cluster_idx = labels.at<int>(y + x*src.rows,0);
new_image.at<Vec3b>(y,x)[0] = centers.at<float>(cluster_idx, 0);
new_image.at<Vec3b>(y,x)[1] = centers.at<float>(cluster_idx, 1);
new_image.at<Vec3b>(y,x)[2] = centers.at<float>(cluster_idx, 2);
}
imshow( "clustered image", new_image );
waitKey( 0 );
}
As alternative to reshaping the input matrix manually, you can use OpenCV reshape function to achieve similar result with less code. Here is my working implementation of reducing colors count with K-Means method (in Java):
private final static int MAX_ITER = 10;
private final static int CLUSTERS = 16;
public static Mat colorMapKMeans(Mat img, int K, int maxIterations) {
Mat m = img.reshape(1, img.rows() * img.cols());
m.convertTo(m, CvType.CV_32F);
Mat bestLabels = new Mat(m.rows(), 1, CvType.CV_8U);
Mat centroids = new Mat(K, 1, CvType.CV_32F);
Core.kmeans(m, K, bestLabels,
new TermCriteria(TermCriteria.COUNT | TermCriteria.EPS, maxIterations, 1E-5),
1, Core.KMEANS_RANDOM_CENTERS, centroids);
List<Integer> idx = new ArrayList<>(m.rows());
Converters.Mat_to_vector_int(bestLabels, idx);
Mat imgMapped = new Mat(m.size(), m.type());
for(int i = 0; i < idx.size(); i++) {
Mat row = imgMapped.row(i);
centroids.row(idx.get(i)).copyTo(row);
}
return imgMapped.reshape(3, img.rows());
}
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Highgui.imwrite("result.png",
colorMapKMeans(Highgui.imread(args[0], Highgui.CV_LOAD_IMAGE_COLOR),
CLUSTERS, MAX_ITER));
}
OpenCV reads image into 2 dimensional, 3 channel matrix. First call to reshape - img.reshape(1, img.rows() * img.cols()); - essentially unrolls 3 channels into columns. In resulting matrix one row corresponds to one pixel of the input image, and 3 columns corresponds to RGB components.
After K-Means algorithm finished its work, and color mapping has been applied, we call reshape again - imgMapped.reshape(3, img.rows()), but now rolling columns back into channels, and reducing row numbers to the original image row number, thus getting back the original matrix format, but only with reduced colors.