Best practice for resolving in Spring4D? - delphi

In the spring4d demos, ServiceLocator.GetService<MyType>('Name') is used to resolve the types. But why not use GlobalContainer.Resolve<MyType>('Name')? I don't see any advantage in this approach...

There is one use case, where I use ServiceLocator:
when coding to make legacy code projects unit-testable...
There is an old project, where in mulitiple places, there are constructor calls of an object, which I write tests for (new and changed methods only, in classes, where injection is not possible, e.g. when a Form is created and destroyed in a button event).
In unit-tests, spring4d is helpful to instantiate the class-under-test:
I can use the GlobalContainer in the dpr for the production project and a special (test-only) TContainer-object which is constructed in Testfixture.Setup and destroyed in Testfixture.TearDown... I also re-initialize the global Service-Locator to use my Test-Container (Reason: I have bad experiences to use GlobalContainer in Test, you cannot un-register a type from GlobalContainer in Testfixture.TearDown).
So now, I got a big method in the dpr, where I register all types to GlobalContainer in the production-code project. In the Setup-Method of my test-fixture-class, I register all types needed for the test to my Testing-Container. And in the Methods, that I changed to make them unit-testable, I construct the classes-under-test with ServiceLocator, where formerly constructor-calls where used.
For me, it is the only way to make such a legacy-code project unit-testable... But my strategic goal is to replace most of this code (part-by-part, including the re-initialized ServiceLocators) one day. It is just not possible to replace it now (too much costs, too much risk...).

Related

Removing singleton instances from Delphi project

I am trying to make my first project that can be unit tested. And it is amazing how I have to rewire my brain of some vicious coding styles.
This article got me the attention that Singletons are pathological liars
I am not trying to be radical on that, but I am used to an artifact that I am not sure how can i get rid of it
example:
initialization
ModelFactory.RegisterFactoryMethod('standard.contasmovimento',
function(AParam: Variant) : TModel
begin
result := TModelContasMovimento.Create(AParam);
end);
end.
ModelFactory is a singleton, defined on its unit and part of the uses clause of this unit.
In my MVP structure I define each of the Models, Views and Presenters in its own unit (1 class 1 unit). All these units are available to be used, according the needs of each project. So, I use it like a parts catalog, according the project I add the units to the project and it gets automatically registered and ready to be used from the factories.
To solve the singleton problem i was thinking in move them to a framework class, so I could create the object at one point and then could use dependency injection to pass the framework object. All the factories and other environment stuff are sit there:
TMyFramework = class
FModelFactory: IModelFactory;
FViewFactory: IViewFactory;
FPresenterFactory: IPresenterFactory;
property ModeFactory: IModelFactory read FModelFactory;
...
My ideia is remove the singletons in a way that I can mock them in a test unit. With singletons in place I cant remove them easily for testing.
But that will make me loose the automatic initialization of each unit, an I rely on that to add the units. I don't want to manually create a list of available classes.
Is there a way to solve this situation?
For unit testing to get off the ground without a complete rewrite of all the singletons you have, I have found that just adding the ability to Free and re-Create the singletons is usually more than enough to get you started.
Assuming the singletons are instantiated in an initialization section (Ban those. They are the bane of any unit test. Go for separate registration and initialization units.), you can simply add two procedures to the interface section. Put them between conditional defines if you don't want other units in your normal project to use them:
{$IFDEF DUNIT}
procedure InstantiateMySingleton;
procedure FreeMySingleton;
{$ENDIF}
Move the code that you now have in your initialization and finalization sections to the implementation of these procedures and just call them from the initialization and finalization.
procedure InstantiateMySingleton;
begin
// ...
end;
procedure FreeMySingleton;
begin
// ...
end;
initialization
InstantiateMySingleton;
finalization
FreeMySingleton;
With this done you can start to use the InstantiateMySingleton and FreeMySingleton in your unit tests' setup and teardown methods.
All you have then left to do is to make sure that creating and destroying the singleton doesn't leak memory and is something that can actually be repeated with the same functional results every single time. One thing I have found that helps in ensuring this is to use the GUI runner and run the whole test suite twice (without exiting the GUI of course!). If there are tests that succeed on the first run and fail on the second run, you have problems in the initialization or finalization of your singleton.
It depends if you need the instance in another class or the factory to instantiate the class at a later point. In the first case you can simply pass the constructed instance as dependency. In the other case you pass the factory. In both cases you are using dependency injection instead of looking it up in some other unit ("Don't look for things but ask for things").
Of course this requires some wire up code for the dependency ("poor man's DI") or the use of a DI container.
Dependency injection really is the only way to make things testable in a clean way because you just simply pass mocks to the SUT.
In general, Misco is making the case about (not) using Singletons in other objects. It's a bit of a stretch but one could view a delphi unit as an object so the question is what to do to remove the Singleton dependency in the unit.
The easiest solution, and one I have been using for some time is to move all initialization code for a give project into one (or several) units who's only purpose is to do the initialization for your application.
As for your testcases, you are now free to ommit that unit and initialize (mock) to whatever you want.
If I look enough I am sure I can find an article describing each and every design pattern either as an anti-pattern or the devil incarnate. For example, here is article that describes the Service Locator pattern as an anti-pattern:
http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern/
I have seen comments describing factory patterns as anti-patterns.
I have often used singletons in factories in the past and I have no problem testing the adapters/plugins/etc that I "load" with these factories in unit tests. Typically the code in singletons is simple and not something that I would test in itself. The code is tested enough just through normal use. All of the Dependency Injection libraries that I have seen include a singleton for their global container.
Where possible I like to configure my adapters in XML. The system itself is then completely modular and easy to test.
I am not saying that dependency injection is bad. Far from it. I like it. If you are building a system from scratch I would certainly advocate it as a good framework to design around and Spring4D is a good implementation. I am putting forward a different view point. I think that rewriting your system to try and take advantage of a newer or different technology should be your last port of call. It reminds me of the Joel Spolsky article about the Netscape rewrite of Navigator (http://www.joelonsoftware.com/articles/fog0000000069.html).

How best to expose a class instance in DWScript

I am putting together a built-in script capability using the excellent Pascal DWScript. I have also add my own Delphi-side class definition (TDemo) to DWScript using:
dwsUnit.ExposeRTTI( TDemo.ClassInfo )
This just works and is a great way of quickly adding properties and methods.
I also wish to add an existing instance in a similar way, so I have created my instance FDemo of type TDemo and then performed:
dwsUnit.ExposeInstanceToUnit( 'Demo', 'TDemo', FDemo );
This looks a promising routine to call but I get an AV from an uninitialised unit table. I've also looked in the unit test code of the SVN source to see the use of this function but to no avail. Can anyone point me at what I should add / change?
ExposeInstanceToUnit has to be used from within the TdwsUnit table initialization, see RTTIExposeTests/ExposeInstancesAfterInitTable for some sample code. It allows directly exposing dynamic instances.
The other approach is to use the Instances collection of a TdwsUnit component, you get design-time support, and more controls over your instances and their lifetime.
Also keep in mind you have to make sure the instances you expose will properly behave even if the script misbehaves, f.i. when the user attempts to manually destroys an instance you exposed, and that instance shouldn't be destroyed. By default ExposeRTTI will map the destructors, so you may want to restrict that by specifying eoNoFreeOnCleanup.
edit: a last approach recently added is to use the TdwsRttiConnector, which basically allows exposing and connection to anything that's reachable through RTTI. That's very lightweight in terms of code to setup, but the downside is you don't get any form of compile-time checks.

Avoiding dependency carrying

When coding, I often come across the following pattern:
-A method calls another method (Fine), but the method being called/callee takes parameters, so in the wrapping method, I pass in parameters. Problem is, this dependency carrying can go on and on. How could I avoid this (any sample code appreciated)?
Thanks
Passing a parameter along just because a lower-layer component needs it is a sign of a Leaky Abstraction. It can often be more effective to refactor dependencies to aggregate services and hide each dependency behind an interface.
Cross-cutting concerns (which are often the most common reason to pass along parameters) are best addressed by Decorators.
If you use a DI Container with interception capabilities, you can take advantage of those to implement Decorators very efficiently (some people refer to this as a container's AOP capabilities).
You can use a dependency injection framework. One such is Guice: see http://code.google.com/p/google-guice/
Step 1: Instead of passing everything as separate arguments, group the arguments into a class, let's say X.
Step 2: Add getters to the class X to get the relevant information. The callee should use the getters to get the information instead of relying on parameters.
Step 3: Create an interface class of which class X inherits. Put all the getters in the interface (in C++ this is as pure virtual methods).
Step 4: Make the called methods only depend on the interface.
Refactoring: Introduce Parameter Object
You have a group of parameters that naturally go together?
Replace them with an object.
http://www.refactoring.com/catalog/introduceParameterObject.html
The advantage of the parameter object is that the calls passing them around don't need to change if you add/remove parameters.
(given the context of your answers, I don't think that an IoC library or dependency injection patterns are really what you're after)
Since they cannot be (easily) unit tested, most developers choose to inject objects into Views. Since the views are not (normally) used to construct other views, that is where your DI chain ends. You may have the issue (which I have run into every once in ahwile) where you need to construct objects in the correct order especially when using a DI framework like Unity where an attemt to resolve the object will deadlock. The main thing you need to worry about is circular dependency. In order to do this, read the following article:
Can dependency injection prevent a circular dependency?

Dependency injection through constructors or property setters?

I'm refactoring a class and adding a new dependency to it. The class is currently taking its existing dependencies in the constructor. So for consistency, I add the parameter to the constructor.
Of course, there are a few subclasses plus even more for unit tests, so now I am playing the game of going around altering all the constructors to match, and it's taking ages.
It makes me think that using properties with setters is a better way of getting dependencies. I don't think injected dependencies should be part of the interface to constructing an instance of a class. You add a dependency and now all your users (subclasses and anyone instantiating you directly) suddenly know about it. That feels like a break of encapsulation.
This doesn't seem to be the pattern with the existing code here, so I am looking to find out what the general consensus is, pros and cons of constructors versus properties. Is using property setters better?
Well, it depends :-).
If the class cannot do its job without the dependency, then add it to the constructor. The class needs the new dependency, so you want your change to break things. Also, creating a class that is not fully initialized ("two-step construction") is an anti-pattern (IMHO).
If the class can work without the dependency, a setter is fine.
The users of a class are supposed to know about the dependencies of a given class. If I had a class that, for example, connected to a database, and didn't provide a means to inject a persistence layer dependency, a user would never know that a connection to the database would have to be available. However, if I alter the constructor I let the users know that there is a dependency on the persistence layer.
Also, to prevent yourself from having to alter every use of the old constructor, simply apply constructor chaining as a temporary bridge between the old and new constructor.
public class ClassExample
{
public ClassExample(IDependencyOne dependencyOne, IDependencyTwo dependencyTwo)
: this (dependnecyOne, dependencyTwo, new DependnecyThreeConcreteImpl())
{ }
public ClassExample(IDependencyOne dependencyOne, IDependencyTwo dependencyTwo, IDependencyThree dependencyThree)
{
// Set the properties here.
}
}
One of the points of dependency injection is to reveal what dependencies the class has. If the class has too many dependencies, then it may be time for some refactoring to take place: Does every method of the class use all the dependencies? If not, then that's a good starting point to see where the class could be split up.
Of course, putting on the constructor means that you can validate all at once. If you assign things into read-only fields then you have some guarantees about your object's dependencies right from construction time.
It is a real pain adding new dependencies, but at least this way the compiler keeps complaining until it's correct. Which is a good thing, I think.
If you have large number of optional dependencies (which is already a smell) then probably setter injection is the way to go. Constructor injection better reveals your dependencies though.
The general preferred approach is to use constructor injection as much as possible.
Constructor injection exactly states what are the required dependencies for the object to function properly - nothing is more annoying than newing up an object and having it crashing when calling a method on it because some dependency is not set. The object returned by a constructor should be in a working state.
Try to have only one constructor, it keeps the design simple and avoids ambiguity (if not for humans, for the DI container).
You can use property injection when you have what Mark Seemann calls a local default in his book "Dependency Injection in .NET": the dependency is optional because you can provide a fine working implementation but want to allow the caller to specify a different one if needed.
(Former answer below)
I think that constructor injection are better if the injection is mandatory. If this adds too many constructors, consider using factories instead of constructors.
The setter injection is nice if the injection is optional, or if you want to change it halfway trough. I generally don't like setters, but it's a matter of taste.
It's largely a matter of personal taste.
Personally I tend to prefer the setter injection, because I believe it gives you more flexibility in the way that you can substitute implementations at runtime.
Furthermore, constructors with a lot of arguments are not clean in my opinion, and the arguments provided in a constructor should be limited to non-optional arguments.
As long as the classes interface (API) is clear in what it needs to perform its task,
you're good.
I prefer constructor injection because it helps "enforce" a class's dependency requirements. If it's in the c'tor, a consumer has to set the objects to get the app to compile. If you use setter injection they may not know they have a problem until run time - and depending on the object, it might be late in run time.
I still use setter injection from time to time when the injected object maybe needs a bunch of work itself, like initialization.
I personally prefer the Extract and Override "pattern" over injecting dependencies in the constructor, largely for the reason outlined in your question. You can set the properties as virtual and then override the implementation in a derived testable class.
I perfer constructor injection, because this seems most logical. Its like saying my class requires these dependencies to do its job. If its an optional dependency then properties seem reasonable.
I also use property injection for setting things that the container does not have a references to such as an ASP.NET View on a presenter created using the container.
I dont think it breaks encapsulation. The inner workings should remain internal and the dependencies deal with a different concern.
One option that might be worth considering is composing complex multiple-dependencies out of simple single dependencies. That is, define extra classes for compound dependencies. This makes things a little easier WRT constructor injection - fewer parameters per call - while still maintaining the must-supply-all-dependencies-to-instantiate thing.
Of course it makes most sense if there's some kind of logical grouping of dependencies, so the compound is more than an arbitrary aggregate, and it makes most sense if there are multiple dependents for a single compound dependency - but the parameter block "pattern" has been around for a long time, and most of those that I've seen have been pretty arbitrary.
Personally, though, I'm more a fan of using methods/property-setters to specify dependencies, options etc. The call names help describe what is going on. It's a good idea to provide example this-is-how-to-set-it-up snippets, though, and make sure the dependent class does enough error checks. You might want to use a finite state model for the setup.
I recently ran into a situation where I had multiple dependencies in a class, but only one of the dependencies was necessarily going to change in each implementation. Since the data access and error logging dependencies would likely only be changed for testing purposes, I added optional parameters for those dependencies and provided default implementations of those dependencies in my constructor code. In this way, the class maintains its default behavior unless overridden by the consumer of the class.
Using optional parameters can only be accomplished in frameworks that support them, such as .NET 4 (for both C# and VB.NET, though VB.NET has always had them). Of course, you can accomplish similar functionality by simply using a property that can be reassigned by the consumer of your class, but you don't get the advantage of immutability provided by having a private interface object assigned to a parameter of the constructor.
All of this being said, if you are introducing a new dependency that must be provided by every consumer, you're going to have to refactor your constructor and all code that consumers your class. My suggestions above really only apply if you have the luxury of being able to provide a default implementation for all of your current code but still provide the ability to override the default implementation if necessary.
Constructor injection does explicitly reveal the dependencies, making code more readable and less prone to unhandled run-time errors if arguments are checked in the constructor, but it really does come down to personal opinion, and the more you use DI the more you'll tend to sway back and forth one way or the other depending on the project. I personally have issues with code smells like constructors with a long list of arguments, and I feel that the consumer of an object should know the dependencies in order to use the object anyway, so this makes a case for using property injection. I don't like the implicit nature of property injection, but I find it more elegant, resulting in cleaner-looking code. But on the other hand, constructor injection does offer a higher degree of encapsulation, and in my experience I try to avoid default constructors, as they can have an ill effect on the integrity of the encapsulated data if one is not careful.
Choose injection by constructor or by property wisely based on your specific scenario. And don't feel that you have to use DI just because it seems necessary and it will prevent bad design and code smells. Sometimes it's not worth the effort to use a pattern if the effort and complexity outweighs the benefit. Keep it simple.
This is an old post, but if it is needed in future maybe this is of any use:
https://github.com/omegamit6zeichen/prinject
I had a similar idea and came up with this framework. It is probably far from complete, but it is an idea of a framework focusing on property injection
It depends on how you want to implement.
I prefer constructor injection wherever I feel the values that go in to the implementation doesnt change often. Eg: If the compnay stragtegy is go with oracle server, I will configure my datsource values for a bean achiveing connections via constructor injection.
Else, if my app is a product and chances it can connect to any db of the customer , I would implement such db configuration and multi brand implementation through setter injection. I have just taken an example but there are better ways of implementing the scenarios I mentioned above.
When to use Constructor injection?
When we want to make sure that the Object is created with all of its dependencies and to ensure that required dependencies are not null.
When to use Setter injection?
When we are working with optional dependencies that can be assigned reasonable default values within the class. Otherwise, not-null checks must be performed everywhere the code uses the dependency.
Additionally, setter methods make objects of that class open to reconfiguration or re-injection at a later time.
Sources:
Spring documentation ,
Java Revisited

How do programmers practice code reuse

I've been a bad programmer because I am doing a copy and paste. An example is that everytime i connect to a database and retrieve a recordset, I will copy the previous code and edit, copy the code that sets the datagridview and edit. I am aware of the phrase code reuse, but I have not actually used it. How can i utilize code reuse so that I don't have to copy and paste the database code and the datagridview code.,
The essence of code reuse is to take a common operation and parameterize it so it can accept a variety of inputs.
Take humble printf, for example. Imagine if you did not have printf, and only had write, or something similar:
//convert theInt to a string and write it out.
char c[24];
itoa(theInt, c, 10);
puts(c);
Now this sucks to have to write every time, and is actually kind of buggy. So some smart programmer decided he was tired of this and wrote a better function, that in one fell swoop print stuff to stdout.
printf("%d", theInt);
You don't need to get as fancy as printf with it's variadic arguments and format string. Even just a simple routine such as:
void print_int(int theInt)
{
char c[24];
itoa(theInt, c, 10);
puts(c);
}
would do the trick nickely. This way, if you want to change print_int to always print to stderr you could update it to be:
void print_int(int theInt)
{
fprintf(stderr, "%d", theInt);
}
and all your integers would now magically be printed to standard error.
You could even then bundle that function and others you write up into a library, which is just a collection of code you can load in to your program.
Following the practice of code reuse is why you even have a database to connect to: someone created some code to store records on disk, reworked it until it was usable by others, and decided to call it a database.
Libraries do not magically appear. They are created by programmers to make their lives easier and to allow them to work faster.
Put the code into a routine and call the routine whenever you want that code to be executed.
Check out Martin Fowler's book on refactoring, or some of the numerous refactoring related internet resources (also on stackoverflow), to find out how you could improve code that has smells of duplication.
At first, create a library with reusable functions. They can be linked with different applications. It saves a lot of time and encourages reuse.
Also be sure the library is unit tested and documented. So it is very easy to find the right class/function/variable/constant.
Good rule of thumb is if you use same piece three times, and it's obviously possible to generalize it, than make it a procedure/function/library.
However, as I am getting older, and also more experienced as a professional developer, I am more inclined to see code reuse as not always the best idea, for two reasons:
It's difficult to anticipate future needs, so it's very hard to define APIs so you would really use them next time. It can cost you twice as much time - once you make it more general just so that second time you are going to rewrite it anyway. It seems to me that especially Java projects of late are prone to this, they seem to be always rewritten in the framework du jour, just to be more "easier to integrate" or whatever in the future.
In a larger organization (I am a member of one), if you have to rely on some external team (either in-house or 3rd party), you can have a problem. Your future then depends on their funding and their resources. So it can be a big burden to use foreign code or library. In a similar fashion, if you share a piece of code to some other team, they can then expect that you will maintain it.
Note however, these are more like business reasons, so in open source, it's almost invariably a good thing to be reusable.
to get code reuse you need to become a master of...
Giving things names that capture their essence. This is really really important
Making sure that it only does one thing. This is really comes back to the first point, if you can't name it by its essence, then often its doing too much.
Locating the thing somewhere logical. Again this comes back to being able to name things well and capturing its essence...
Grouping it with things that build on a central concept. Same as above, but said differntly :-)
The first thing to note is that by using copy-and-paste, you are reusing code - albeit not in the most efficient way.
You have recognised a situation where you have come up with a solution previously.
There are two main scopes that you need to be aware of when thinking about code reuse. Firstly, code reuse within a project and, secondly, code reuse between projects.
The fact that you have a piece of code that you can copy and paste within a project should be a cue that the piece of code that you're looking at is useful elsewhere. That is the time to make it into a function, and make it available within the project.
Ideally you should replace all occurrances of that code with your new function, so that it (a) reduces redundant code and (b) ensures that any bugs in that chunk of code only need to be fixed in one function instead of many.
The second scope, code reuse across projects, requires some more organisation to get the maximum benefit. This issue has been addressed in a couple of other SO questions eg. here and here.
A good start is to organise code that is likely to be reused across projects into source files that are as self-contained as possible. Minimise the amount of supporting, project specific, code that is required as this will make it easier to reuse entire files in a new project. This means minimising the use of project specific data-types, minimising the use project specific global variables, etc.
This may mean creating utility files that contain functions that you know are going to be useful in your environment. eg. Common database functions if you often develop projects that depend on databases.
I think the best way to answer your problem is that create a separate assembly for your important functions.. in this way you can create extension methods or modify the helper assemble itself.. think of this function..
ExportToExcel(List date, string filename)
this method can be use for your future excel export functions so why don't store it in your own helper assembly.. i this way you just add reference to these assemblies.
Depending on the size of the project can change the answer.
For a smaller project I would recommend setting up a DatabaseHelper class that does all your DB access. It would just be a wrapper around opening/closing connections and execution of the DB code. Then at a higher level you can just write the DBCommands that will be executed.
A similar technique could be used for a larger project, but would need some additional work, interfaces need to be added, DI, as well as abstracting out what you need to know about the database.
You might also try looking into ORM, DAAB, or over to the Patterns and Practices Group
As far as how to prevent the ole C&P? - Well as you write your code, you need to periodically review it, if you have similar blocks of code, that only vary by a parameter or two, that is always a good candidate for refactoring into its own method.
Now for my pseudo code example:
Function GetCustomer(ID) as Customer
Dim CMD as New DBCmd("SQL or Stored Proc")
CMD.Paramaters.Add("CustID",DBType,Length).Value = ID
Dim DHelper as New DatabaseHelper
DR = DHelper.GetReader(CMD)
Dim RtnCust as New Customer(Dx)
Return RtnCust
End Function
Class DataHelper
Public Function GetDataTable(cmd) as DataTable
Write the DB access code stuff here.
GetConnectionString
OpenConnection
Do DB Operation
Close Connection
End Function
Public Function GetDataReader(cmd) as DataReader
Public Function GetDataSet(cmd) as DataSet
... And So on ...
End Class
For the example you give, the appropriate solution is to write a function that takes as parameters whatever it is that you edit whenever you paste the block, then call that function with the appropriate data as parameters.
Try and get into the habit of using other people's functions and libraries.
You'll usually find that your particular problem has a well-tested, elegant solution.
Even if the solutions you find aren't a perfect fit, you'll probably gain a lot of insight into the problem by seeing how other people have tackled it.
I'll do this at two levels. First within a class or namespace, put that code piece that is reused in that scope in a separate method and make sure it is being called.
Second is something similar to the case that you are describing. That is a good candidate to be put in a library or a helper/utility class that can be reused more broadly.
It is important to evaluate everything that you are doing with an perspective whether it can be made available to others for reuse. This should be a fundamental approach to programming that most of us dont realize.
Note that anything that is to be reused needs to be documented in more detail. Its naming convention be distinct, all the parameters, return results and any constraints/limitations/pre-requisites that are needed should be clearly documented (in code or help files).
It depends somewhat on what programming language you're using. In most languages you can
Write a function, parameterize it to allow variations
Write a function object, with members to hold the varying data
Develop a hierarchy of (function object?) classes that implement even more complicated variations
In C++ you could also develop templates to generate the various functions or classes at compile time
Easy: whenever you catch yourself copy-pasting code, take it out immediately (i.e., don't do it after you've already CP'd code several times) into a new function.

Resources