Maybe I missed something in the Docker documentation, but I'm curious and can't find an answer:
What mechanism is used to restart docker containers if they should error/close/etc?
Also, if many functions have to be done via a docker run command, say for instance volume mounting or linking, how does one bring up an entire hive of containers which complete an application without using docker compose? (as they say it is not production ready)
What mechanism is used to restart docker containers if they should error/close/etc?
Docker restart policies, as set with the --restart option to docker run. From the docker-run(1) man page:
--restart=""
Restart policy to apply when a container exits (no, on-fail‐
ure[:max-retry], always)
Also, if many functions have to be done via a docker run command, say for instance volume mounting or linking, how does one bring up an entire hive of containers which complete an application without using docker compose?
Well, you can of course use docker-compose if that is the best match for your requirements, even if it is not labelled as "production ready".
You can investigate larger container management solutions like Kubernetes or even OpenStack (although I would not recommend the latter unless you are already familiar with OpenStack).
You could craft individual systemd unit files for each container.
Related
I built Docker image on server that can run CI-CD for Jenkins. Because some builds use Docker, I installed Docker inside my image, and in order to allow the inside Docker to run, I had to give it --privilege.
All works good, but I would like to run the docker in docker, on Openshift (or Kubernetes). The problem is with getting the --privilege permissions.
Is running privilege container on Openshift is dangerous, and if so why and how much?
A privileged container can reboot the host, replace the host's kernel, access arbitrary host devices (like the raw disk device), and reconfigure the host's network stack, among other things. I'd consider it extremely dangerous, and not really any safer than running a process as root on the host.
I'd suggest that using --privileged at all is probably a mistake. If you really need a process to administer the host, you should run it directly (as root) on the host and not inside an isolation layer that blocks the things it's trying to do. There are some limited escalated-privilege things that are useful, but if e.g. your container needs to mlock(2) you should --cap-add IPC_LOCK for the specific privilege you need, instead of opening up the whole world.
(My understanding is still that trying to run Docker inside Docker is generally considered a mistake and using the host's Docker daemon is preferable. Of course, this also gives unlimited control over the host...)
In short, the answer is no, it's not safe. Docker-in-Docker in particular is far from safe due to potential memory and file system corruption, and even mounting the host's docker socket is unsafe in effectively any environment as it effectively gives the build pipeline root privileges. This is why tools like Buildah and Kaniko were made, as well as build images like S2I.
Buildah in particular is Red Hat's own tool for building inside containers but as of now I believe they still can't run completely privilege-less.
Additionally, on Openshift 4, you cannot run Docker-in-Docker at all since the runtime was changed to CRI-O.
Here's my scenario.
I have 2 Docker containers:
C1: is a container with Ruby (but it could be anything else) that prepares data files on which it must perform a calculation in Julia language
C2: is a container with Julia (or R, or Octave...), used to perform the calculation, so as to avoid installing Julia on the same system or container that run Ruby code
From the host, obviously, I have no problem doing the processing.
Usually when two containers are linked (or belong to the same network) they communicate with each other via a network exposing some door. In this case Julia does not expose any door.
Can I run a command on C2 from C1 similar to what is done between host and C2?
If so, how?
Thanks!
Technically yes, but that's probably not what you want to do.
The Docker CLI is just an interface to the Docker service, which listens at /var/run/docker.sock on the host. Anything that can be done via the CLI can be done by directly communicating with this server. You can mount this socket into a running container (C1) as a volume to allow that container to speak to its host's docker service. Docker has a few permissions that need to be set to allow this; older versions allow containers to run in "privileged" mode, in which case they're allowed to (amongst other things) speak to /var/run/docker.sock with the authority of the host. I believe newer versions of Docker split this permission system up a bit more, but you'd have to look into this. Making this work in swarm mode might be a little different as well. Using this API at a code level without installing the full Docker CLI within the container is certainly possible (using a library or coding up your own interaction). A working example of doing this is JupyterHub+DockerSpawner, which has one privileged Hub server that instantiates new Notebook containers for each logged in user.
I just saw that you explicitly state that the Julia container has no door/interface. Could you wrap that code in a larger container that gives it a server interface while managing the serverless Julia program as a "local" process within the same container?
I needed to solve the same problem. In my case, it all started when I needed to run some scripts located in another container via cron, I tried the following scenarios with no luck:
Forgetting about the two-containers scenario and place all the logic in one container, so inter-container execution is no longer needed: Turns out to be a bad idea since the whole Docker concept is to execute single tasks in each container. In any case, creating a dockerfile to build an image with both my main service (PHP in my case) and a cron daemon proved to be quite messy.
Communicate between containers via SSH: I then decided to try building an image that would take care of running the Cron daemon, that would be the "docker" approach to solve my problem, but the bad idea was to execute the commands from each cronjob by opening an SSH connection to the other container (in your case, C1 connecting via SSH to C2). It turns out it's quite clumsy to implement an inter-container SSH login, and I kept running into problems with permissions, passwordless logins and port routing. It worked at the end, but I'm sure this would add some potential security issues, and I didn't feel it was a clean solution.
Implement some sort of API that I could call via HTTP requests from one container to another, using something like Curl or Wget. This felt like a great solution, but it ultimately meant adding a secondary service to my container (an Nginx to attend HTTP connections), and dealing with HTTP requisites and timeouts just to execute a shell script felt too much of a hassle.
Finally, my solution was to run "docker exec" from within the container. The idea, as described by scnerd is to make sure the docker client interacts with the docker service in your host:
To do so, you must install docker into the container you want to execute your commands from (in your case, C1), by adding a line like this to your Dockerfile (for Debian):
RUN apt-get update && apt-get -y install docker.io
To let the docker client inside your container interact with the docker service on your host, you need to add /var/run/docker.sock as a volume to your container (C1). With Docker compose this is done by adding this to your docker service "volumes" section:
- /var/run/docker.sock:/var/run/docker.sock
Now when you build and run your docker image, you'll be able to execute "docker exec" from within the docker, with a command like this, and you'll be talking to the docker service on the host:
docker exec -u root C2 /path/your_shell_script
This worked well for me. Since, in my case, I wanted the Cron container to launch scripts in other containers, it was as simple as adding "docker exec" commands to the crontab.
This solution, as also presented by scnerd, might not be optimal and I agree with his comments about your structure: Considering your specific needs, this might not be what you need, but it should work.
I would love to hear any comments from someone with more experience with Docker than me!
I have a couple of compose files (docker-compose.yml) describing a simple Django application (five containers, three images).
I want to run this stack in production - to have the whole stack begin on boot, and for containers to restart or be recreated if they crash. There aren't any volumes I care about and the containers won't hold any important state and can be recycled at will.
I haven't found much information on using specifically docker-compose in production in such a way. The documentation is helpful but doesn't mention anything about starting on boot, and I am using Amazon Linux so don't (currently) have access to Docker Machine. I'm used to using supervisord to babysit processes and ensure they start on boot up, but I don't think this is the way to do it with Docker containers, as they end up being ultimately supervised by the Docker daemon?
As a simple start I am thinking to just put restart: always on all my services and make an init script to do docker-compose up -d on boot. Is there a recommended way to manage a docker-compose stack in production in a robust way?
EDIT: I'm looking for a 'simple' way to run the equivalent of docker-compose up for my container stack in a robust way. I know upfront that all the containers declared in the stack can reside on the same machine; in this case I don't have need to orchestrate containers from the same stack across multiple instances, but that would be helpful to know as well.
Compose is a client tool, but when you run docker-compose up -d all the container options are sent to the Engine and stored. If you specify restart as always (or preferably unless-stopped to give you more flexibility) then you don't need run docker-compose up every time your host boots.
When the host starts, provided you have configured the Docker daemon to start on boot, Docker will start all the containers that are flagged to be restarted. So you only need to run docker-compose up -d once and Docker takes care of the rest.
As to orchestrating containers across multiple nodes in a Swarm - the preferred approach will be to use Distributed Application Bundles, but that's currently (as of Docker 1.12) experimental. You'll basically create a bundle from a local Compose file which represents your distributed system, and then deploy that remotely to a Swarm. Docker moves fast, so I would expect that functionality to be available soon.
You can find in their documentation more information about using docker-compose in production. But, as they mention, compose is primarily aimed at development and testing environments.
If you want to use your containers in production, I would suggest you to use a suitable tool to orchestrate containers, as Kubernetes.
If you can organize your Django application as a swarmkit service (docker 1.11+), you can orchestrate the execution of your application with Task.
Swarmkit has a restart policy (see swarmctl flags)
Restart Policies: The orchestration layer monitors tasks and reacts to failures based on the specified policy.
The operator can define restart conditions, delays and limits (maximum number of attempts in a given time window). SwarmKit can decide to restart a task on a different machine. This means that faulty nodes will gradually be drained of their tasks.
Even if your "cluster" has only one node, the orchestration layer will make sure your containers are always up and running.
You say that you use AWS so why don't you use ECS which is built for what you ask. You create an application which is the pack of your 5 containers. You will configure which and how many instances EC2 you want in your cluster.
You just have to convert your docker-compose.yml to the specific Dockerrun.aws.json which is not hard.
AWS will start your containers when you deploy and also restart them in case of crash
I'm running Jenkins inside a Docker container. I wonder if it's ok for the Jenkins container to also be a Docker host? What I'm thinking about is to start a new docker container for each integration test build from inside Jenkins (to start databases, message brokers etc). The containers should thus be shutdown after the integration tests are completed. Is there a reason to avoid running docker containers from inside another docker container in this way?
Running Docker inside Docker (a.k.a. dind), while possible, should be avoided, if at all possible. (Source provided below.) Instead, you want to set up a way for your main container to produce and communicate with sibling containers.
Jérôme Petazzoni — the author of the feature that made it possible for Docker to run inside a Docker container — actually wrote a blog post saying not to do it. The use case he describes matches the OP's exact use case of a CI Docker container that needs to run jobs inside other Docker containers.
Petazzoni lists two reasons why dind is troublesome:
It does not cooperate well with Linux Security Modules (LSM).
It creates a mismatch in file systems that creates problems for the containers created inside parent containers.
From that blog post, he describes the following alternative,
[The] simplest way is to just expose the Docker socket to your CI container, by bind-mounting it with the -v flag.
Simply put, when you start your CI container (Jenkins or other), instead of hacking something together with Docker-in-Docker, start it with:
docker run -v /var/run/docker.sock:/var/run/docker.sock ...
Now this container will have access to the Docker socket, and will therefore be able to start containers. Except that instead of starting "child" containers, it will start "sibling" containers.
I answered a similar question before on how to run a Docker container inside Docker.
To run docker inside docker is definitely possible. The main thing is that you run the outer container with extra privileges (starting with --privileged=true) and then install docker in that container.
Check this blog post for more info: Docker-in-Docker.
One potential use case for this is described in this entry. The blog describes how to build docker containers within a Jenkins docker container.
However, Docker inside Docker it is not the recommended approach to solve this type of problems. Instead, the recommended approach is to create "sibling" containers as described in this post
So, running Docker inside Docker was by many considered as a good type of solution for this type of problems. Now, the trend is to use "sibling" containers instead. See the answer by #predmijat on this page for more info.
It's OK to run Docker-in-Docker (DinD) and in fact Docker (the company) has an official DinD image for this.
The caveat however is that it requires a privileged container, which depending on your security needs may not be a viable alternative.
The alternative solution of running Docker using sibling containers (aka Docker-out-of-Docker or DooD) does not require a privileged container, but has a few drawbacks that stem from the fact that you are launching the container from within a context that is different from that one in which it's running (i.e., you launch the container from within a container, yet it's running at the host's level, not inside the container).
I wrote a blog describing the pros/cons of DinD vs DooD here.
Having said this, Nestybox (a startup I just founded) is working on a solution that runs true Docker-in-Docker securely (without using privileged containers). You can check it out at www.nestybox.com.
Yes, we can run docker in docker, we'll need to attach the unix socket /var/run/docker.sock on which the docker daemon listens by default as volume to the parent docker using -v /var/run/docker.sock:/var/run/docker.sock.
Sometimes, permissions issues may arise for docker daemon socket for which you can write sudo chmod 757 /var/run/docker.sock.
And also it would require to run the docker in privileged mode, so the commands would be:
sudo chmod 757 /var/run/docker.sock
docker run --privileged=true -v /var/run/docker.sock:/var/run/docker.sock -it ...
I was trying my best to run containers within containers just like you for the past few days. Wasted many hours. So far most of the people advise me to do stuff like using the docker's DIND image which is not applicable for my case, as I need the main container to be Ubuntu OS, or to run some privilege command and map the daemon socket into container. (Which never ever works for me)
The solution I found was to use Nestybox on my Ubuntu 20.04 system and it works best. Its also extremely simple to execute, provided your local system is ubuntu (which they support best), as the container runtime are specifically deigned for such application. It also has the most flexible options. The free edition of Nestybox is perhaps the best method as of Nov 2022. Highly recommends you to try it without bothering all the tedious setup other people suggest. They have many pre-constructed solutions to address such specific needs with a simple command line.
The Nestybox provide special runtime environment for newly created docker container, they also provides some ubuntu/common OS images with docker and systemd in built.
Their goal is to make the main container function exactly the same as a virtual machine securely. You can literally ssh into your ubuntu main container as well without the ability to access anything in the main machine. From your main container you may create all kinds of containers like a normal local system does. That systemd is very important for you to setup docker conveniently inside the container.
One simple common command to execute sysbox:
dock run --runtime=sysbox-runc -it any_image
If you think thats what you are looking for, you can find out more at their github:
https://github.com/nestybox/sysbox
Quicklink to instruction on how to deploy a simple sysbox runtime environment container: https://github.com/nestybox/sysbox/blob/master/docs/quickstart/README.md
After reading the introduction of the phusion/baseimage I feel like creating containers from the Ubuntu image or any other official distro image and running a single application process inside the container is wrong.
The main reasons in short:
No proper init process (that handles zombie and orphaned processes)
No syslog service
Based on this facts, most of the official docker images available on docker hub seem to do things wrong. As an example, the MySQL image runs mysqld as the only process and does not provide any logging facilities other than messages written by mysqld to STDOUT and STDERR, accessible via docker logs.
Now the question arises which is the appropriate way to run an service inside docker container.
Is it wrong to run only a single application process inside a docker container and not provide basic Linux system services like syslog?
Does it depend on the type of service running inside the container?
Check this discussion for a good read on this issue. Basically the official party line from Solomon Hykes and docker is that docker containers should be as close to single processes micro servers as possible. There may be many such servers on a single 'real' server. If a processes fails you should just launch a new docker container rather than try to setup initialization etc inside the containers. So if you are looking for the canonical best practices the answer is yeah no basic linux services. It also makes sense when you think in terms of many docker containers running on a single node, you really want them all to run their own versions of these services?
That being said the state of logging in the docker service is famously broken. Even Solomon Hykes the creator of docker admits its a work in progress. In addition you normally need a little more flexibility for a real world deployment. I normally mount my logs onto the host system using volumes and have a log rotate daemon etc running in the host vm. Similarly I either install sshd or leave an interactive shell open in the the container so I can issue minor commands without relaunching, at least until I am really sure my containers are air-tight and no more debugging will be needed.
Edit:
With docker 1.3 and the exec command its no longer necessary to "leave an interactive shell open."
It depends on the type of service you are running.
Docker allows you to "build, ship, and run any app, anywhere" (from the website). That tells me that if an "app" consists of/requires multiple services/processes, then those should be ran in a single Docker container. It would be a pain for a user to have to download, then run multiple Docker images just to run one application.
As a side note, breaking up your application into multiple images is subject to configuration drift.
I can see why you would want to limit a docker container to one process. One reason being uptime. When creating a Docker provisioning system, it's essential to keep the uptime of a container to a minimum so that scaling sideways is fast. This means, that if I can get away with running a single process per Docker container, then I should go for it. But that's not always possible.
To answer your question directly. No, it's not wrong to run a single process in docker.
HTH