Overloading equivalence (==) operator for custom class in Swift - ios

Is it possible to overload equivalence (==) operator for a custom class inside that custom class. However I know that it is possible to have this operator overloaded outside class scope. Appreciate any sample code.
Thanks in advance.

Add global functions. For example:
class CustomClass {
var id = "my id"
}
func ==(lhs: CustomClass, rhs: CustomClass) -> Bool {
return lhs == rhs
}
func !=(lhs: CustomClass, rhs: CustomClass) -> Bool {
return !(lhs == rhs)
}
To conform Equatable protocol in Swift 2
class CustomClass: Equatable {
var id = "my id"
}
func ==(left: CustomClass, right: CustomClass) -> Bool {
return left.id == right.id
}
To conform Equatable protocol in Swift 3
class CustomClass {
var id = "my id"
}
extension CustomClass: Equatable {
static func ==(lhs: CustomClass, rhs: CustomClass) -> Bool {
return lhs.id == rhs.id
}
}

No, operators are overloaded using global functions.

Related

Value of protocol type 'Any' cannot conform to 'Equatable'; only struct/enum/class types can conform to protocols

Value of protocol type 'Any' cannot conform to 'Equatable'; only struct/enum/class types can conform to protocols
Value is type "ANY" as it can be Int or String. So not able to implement Equatable protocol.
struct BusinessDetail:Equatable {
static func == (lhs: BusinessDetail, rhs: BusinessDetail) -> Bool {
lhs.cellType == rhs.cellType && lhs.value == rhs.value
}
let cellType: BusinessDetailCellType
var value: Any?
}
enum BusinessDetailCellType:Int {
case x
case y
var textValue:String {
Switch self {
case x:
return "x"
case y:
return "y"
}
}
}
I had a similar issue, where using [AnyHashable] instead of [Any] type was the solution!
Use Generics instead of Any ...
struct BusinessDetail<T> {
let cellType: BusinessDetailCellType
var value: T?
}
extension BusinessDetail: Equatable {
static func ==<T> (lhs: BusinessDetail<T>, rhs: BusinessDetail<T>) -> Bool {
lhs.cellType == rhs.cellType
}
static func == <T1:Equatable>(lhs: BusinessDetail<T1>, rhs: BusinessDetail<T1>) -> Bool {
lhs.cellType == rhs.cellType && lhs.value == rhs.value
}
}
enum BusinessDetailCellType:Int {
case x
case y
var textVlaue:String {
switch self {
case .x:
return "x"
case .y:
return "y"
}
}
}

Swift Equatable on a protocol

I don't think this can be done but I'll ask anyway. I have a protocol:
protocol X {}
And a class:
class Y:X {}
In the rest of my code I refer to everything using the protocol X. In that code I would like to be able to do something like:
let a:X = ...
let b:X = ...
if a == b {...}
The problem is that if I try to implement Equatable:
protocol X: Equatable {}
func ==(lhs:X, rhs:X) -> Bool {
if let l = lhs as? Y, let r = hrs as? Y {
return l.something == r.something
}
return false
}
The idea to try and allow the use of == whilst hiding the implementations behind the protocol.
Swift doesn't like this though because Equatable has Self references and it will no longer allow me to use it as a type. Only as a generic argument.
So has anyone found a way to apply an operator to a protocol without the protocol becoming unusable as a type?
If you directly implement Equatable on a protocol, it will not longer be usable as a type, which defeats the purpose of using a protocol. Even if you just implement == functions on protocols without Equatable conformance, results can be erroneous. See this post on my blog for a demonstration of these issues:
https://khawerkhaliq.com/blog/swift-protocols-equatable-part-one/
The approach that I have found to work best is to use type erasure. This allows making == comparisons for protocol types (wrapped in type erasers). It is important to note that while we continue to work at the protocol level, the actual == comparisons are delegated to the underlying concrete types to ensure correct results.
I have built a type eraser using your brief example and added some test code at the end. I have added a constant of type String to the protocol and created two conforming types (structs are the easiest for demonstration purposes) to be able to test the various scenarios.
For a detailed explanation of the type erasure methodology used, check out part two of the above blog post:
https://khawerkhaliq.com/blog/swift-protocols-equatable-part-two/
The code below should support the equality comparison that you wanted to implement. You just have to wrap the protocol type in a type eraser instance.
protocol X {
var name: String { get }
func isEqualTo(_ other: X) -> Bool
func asEquatable() -> AnyEquatableX
}
extension X where Self: Equatable {
func isEqualTo(_ other: X) -> Bool {
guard let otherX = other as? Self else { return false }
return self == otherX
}
func asEquatable() -> AnyEquatableX {
return AnyEquatableX(self)
}
}
struct Y: X, Equatable {
let name: String
static func ==(lhs: Y, rhs: Y) -> Bool {
return lhs.name == rhs.name
}
}
struct Z: X, Equatable {
let name: String
static func ==(lhs: Z, rhs: Z) -> Bool {
return lhs.name == rhs.name
}
}
struct AnyEquatableX: X, Equatable {
var name: String { return value.name }
init(_ value: X) { self.value = value }
private let value: X
static func ==(lhs: AnyEquatableX, rhs: AnyEquatableX) -> Bool {
return lhs.value.isEqualTo(rhs.value)
}
}
// instances typed as the protocol
let y: X = Y(name: "My name")
let z: X = Z(name: "My name")
let equalY: X = Y(name: "My name")
let unequalY: X = Y(name: "Your name")
// equality tests
print(y.asEquatable() == z.asEquatable()) // prints false
print(y.asEquatable() == equalY.asEquatable()) // prints true
print(y.asEquatable() == unequalY.asEquatable()) // prints false
Note that since the type eraser conforms to the protocol, you can use instances of the type eraser anywhere an instance of the protocol type is expected.
Hope this helps.
The reason why you should think twice about having a protocol conform to Equatable is that in many cases it just doesn't make sense. Consider this example:
protocol Pet: Equatable {
var age: Int { get }
}
extension Pet {
static func == (lhs: Pet, rhs: Pet) -> Bool {
return lhs.age == rhs.age
}
}
struct Dog: Pet {
let age: Int
let favoriteFood: String
}
struct Cat: Pet {
let age: Int
let favoriteLitter: String
}
let rover: Pet = Dog(age: "1", favoriteFood: "Pizza")
let simba: Pet = Cat(age: "1", favoriteLitter: "Purina")
if rover == simba {
print("Should this be true??")
}
You allude to type checking within the implementation of == but the problem is that you have no information about either of the types beyond them being Pets and you don't know all the things that might be a Pet (maybe you will add a Bird and Rabbit later). If you really need this, another approach can be modeling how languages like C# implement equality, by doing something like:
protocol IsEqual {
func isEqualTo(_ object: Any) -> Bool
}
protocol Pet: IsEqual {
var age: Int { get }
}
struct Dog: Pet {
let age: Int
let favoriteFood: String
func isEqualTo(_ object: Any) -> Bool {
guard let otherDog = object as? Dog else { return false }
return age == otherDog.age && favoriteFood == otherDog.favoriteFood
}
}
struct Cat: Pet {
let age: Int
let favoriteLitter: String
func isEqualTo(_ object: Any) -> Bool {
guard let otherCat = object as? Cat else { return false }
return age == otherCat.age && favoriteLitter == otherCat.favoriteLitter
}
}
let rover: Pet = Dog(age: "1", favoriteFood: "Pizza")
let simba: Pet = Cat(age: "1", favoriteLitter: "Purina")
if !rover.isEqualTo(simba) {
print("That's more like it.")
}
At which point if you really wanted, you could implement == without implementing Equatable:
static func == (lhs: IsEqual, rhs: IsEqual) -> Bool { return lhs.isEqualTo(rhs) }
One thing you would have to watch out for in this case is inheritance though. Because you could downcast an inheriting type and erase the information that might make isEqualTo not make logical sense.
The best way to go though is to only implement equality on the class/struct themselves and use another mechanism for type checking.
Determining equality across conformances to a Swift protocol is possible without type erasure if:
you are willing to forgo the operator syntax (i.e. call isEqual(to:) instead of ==)
you control the protocol (so you can add an isEqual(to:) func to it)
import XCTest
protocol Shape {
func isEqual (to: Shape) -> Bool
}
extension Shape where Self : Equatable {
func isEqual (to: Shape) -> Bool {
return (to as? Self).flatMap({ $0 == self }) ?? false
}
}
struct Circle : Shape, Equatable {
let radius: Double
}
struct Square : Shape, Equatable {
let edge: Double
}
class ProtocolConformanceEquality: XCTestCase {
func test() {
// Does the right thing for same type
XCTAssertTrue(Circle(radius: 1).isEqual(to: Circle(radius: 1)))
XCTAssertFalse(Circle(radius: 1).isEqual(to: Circle(radius: 2)))
// Does the right thing for different types
XCTAssertFalse(Square(edge: 1).isEqual(to: Circle(radius: 1)))
}
}
Any conformances don't conform to Equatable will need to implement isEqual(to:) themselves
maybe this will be helpful for you:
protocol X:Equatable {
var name: String {get set}
}
extension X {
static func ==(lhs: Self, rhs: Self) -> Bool {
return lhs.name == rhs.name
}
}
struct Test : X {
var name: String
}
let first = Test(name: "Test1")
let second = Test(name: "Test2")
print(first == second) // false
All people who say that you can't implement Equatable for a protocol just don't try hard enough. Here is the solution (Swift 4.1) for your protocol X example:
protocol X: Equatable {
var something: Int { get }
}
// Define this operator in the global scope!
func ==<L: X, R: X>(l: L, r: R) -> Bool {
return l.something == r.something
}
And it works!
class Y: X {
var something: Int = 14
}
struct Z: X {
let something: Int = 9
}
let y = Y()
let z = Z()
print(y == z) // false
y.something = z.something
print(y == z) // true
The only problem is that you can't write let a: X = Y() because of "Protocol can only be used as a generic constraint" error.
Not sure why you need all instances of your protocol to conform to Equatable, but I prefer letting classes implement their equality methods.
In this case, I'd leave the protocol simple:
protocol MyProtocol {
func doSomething()
}
If you require that an object that conforms to MyProtocol is also Equatable you can use MyProtocol & Equatable as type constraint:
// Equivalent: func doSomething<T>(element1: T, element2: T) where T: MyProtocol & Equatable {
func doSomething<T: MyProtocol & Equatable>(element1: T, element2: T) {
if element1 == element2 {
element1.doSomething()
}
}
This way you can keep your specification clear and let subclasses implement their equality method only if required.
I would still advise against implementing == using polymorphism. It's a bit of a code smell. If you want to give the framework user something he can test equality with then you should really be vending a struct, not a protocol. That's not to say that it can't be the protocols that are vending the structs though:
struct Info: Equatable {
let a: Int
let b: String
static func == (lhs: Info, rhs: Info) -> Bool {
return lhs.a == rhs.a && lhs.b == rhs.b
}
}
protocol HasInfo {
var info: Info { get }
}
class FirstClass: HasInfo {
/* ... */
}
class SecondClass: HasInfo {
/* ... */
}
let x: HasInfo = FirstClass( /* ... */ )
let y: HasInfo = SecondClass( /* ... */ )
print(x == y) // nope
print(x.info == y.info) // yep
I think this more efficiently communicates your intent, which is basically "you have these things and you don't know if they are the same things, but you do know they have the same set of properties and you can test whether those properties are the same." That is pretty close to how I would implement that Money example.
You have to implement a protocol extension constrained to your class type. Inside that extension you should implement the Equatable operator.
public protocol Protocolable: class, Equatable
{
// Other stuff here...
}
public extension Protocolable where Self: TheClass
{
public static func ==(lhs: Self, rhs:Self) -> Bool
{
return lhs.name == rhs.name
}
}
public class TheClass: Protocolable
{
public var name: String
public init(named name: String)
{
self.name = name
}
}
let aClass: TheClass = TheClass(named: "Cars")
let otherClass: TheClass = TheClass(named: "Wall-E")
if aClass == otherClass
{
print("Equals")
}
else
{
print("Non Equals")
}
But let me recommend you add the operator implementation to your class. Keep It Simple ;-)
Swift 5.1 introduces a new feature into the language called opaque types
Check code below
that still gets back a X, which might be an Y, a Z, or something else that conforms to the X protocol,
but the compiler knows exactly what is being returned
protocol X: Equatable { }
class Y: X {
var something = 3
static func == (lhs: Y, rhs: Y) -> Bool {
return lhs.something == rhs.something
}
static func make() -> some X {
return Y()
}
}
class Z: X {
var something = "5"
static func == (lhs: Z, rhs: Z) -> Bool {
return lhs.something == rhs.something
}
static func make() -> some X {
return Z()
}
}
let a = Z.make()
let b = Z.make()
a == b
I came cross this same issue and I figured that the == operator can be implemented in the global scope (as it used to be), as opposed to a static func inside the protocol's scope:
// This should go in the global scope
public func == (lhs: MyProtocol?, rhs: MyProtocol?) -> Bool { return lhs?.id == rhs?.id }
public func != (lhs: MyProtocol?, rhs: MyProtocol?) -> Bool { return lhs?.id != rhs?.id }
Note that if you use linters such as SwiftLint's static_operator, you'll have to wrap that code around // swiftlint:disable static_operator to silent linter warnings.
Then this code will start compiling:
let obj1: MyProtocol = ConcreteType(id: "1")
let obj2: MyProtocol = ConcreteType(id: "2")
if obj1 == obj2 {
print("They're equal.")
} else {
print("They're not equal.")
}
took some of the code from above and came with the following sollution.
it uses the IsEqual protocol instead of the Equatable protocol and with a few line codes you will be able to compare any two protocol objects with each other, wether they are optional or not, are in an array and even add comparing dates while I was at it.
protocol IsEqual {
func isEqualTo(_ object: Any) -> Bool
}
func == (lhs: IsEqual?, rhs: IsEqual?) -> Bool {
guard let lhs = lhs else { return rhs == nil }
guard let rhs = rhs else { return false }
return lhs.isEqualTo(rhs) }
func == (lhs: [IsEqual]?, rhs: [IsEqual]?) -> Bool {
guard let lhs = lhs else { return rhs == nil }
guard let rhs = rhs else { return false }
guard lhs.count == rhs.count else { return false }
for i in 0..<lhs.count {
if !lhs[i].isEqualTo(rhs[i]) {
return false
}
}
return true
}
func == (lhs: Date?, rhs: Date?) -> Bool {
guard let lhs = lhs else { return rhs == nil }
guard let rhs = rhs else { return false }
return lhs.compare(rhs) == .orderedSame
}
protocol Pet: IsEqual {
var age: Int { get }
}
struct Dog: Pet {
let age: Int
let favoriteFood: String
func isEqualTo(_ object: Any) -> Bool {
guard let otherDog = object as? Dog else { return false }
return age == otherDog.age && favoriteFood == otherDog.favoriteFood
}
}

Extend #objc protocol with Comparable in Swift

I am trying to extend my protocol Option with Comparable to use simple .sort() method.
Below short example only with Equatable to show errors.
#objc protocol Option: Equatable {
var title: String { get }
var enabled: Bool { get }
var position: Int { get }
}
func ==(lhs: Option, rhs: Option) -> Bool {
return lhs.position == rhs.position
}
The Option protocol must be marked as #objc or inherit from NSObjectProtocol because it will be used with UIKit.
Errors:
#objc protocol 'Option' cannot refine non-#objc protocol
'Equatable'
Protocol 'Option' can only be used as a generic constraint
because it has Self or associated type requirements
Do you have any suggestion how to solve this problem?
Equatable lives in the Swift world only, thus you cannot extend it to a protocol that will be used by Objective-C. Trying to do this results in error #1
Protocols that have a Self requirement (i.e. at least one method from the protocol declaration contains Self) cannot be used as arguments to functions, or to variable declarations, only as arguments to a generic clause, e.g. func doSomething<T: Option>(argument: T).
Removing Equatable from the Option protocol declaration, and declaring == as generic on Option will solve the compile errors. As for sorting, you can also overload the < operator, and sort via that operator (without needing to implement Comparable):
#objc protocol Option {
var title: String { get }
var enabled: Bool { get }
var position: Int { get }
}
func ==<T: Option>(lhs: T, rhs: T) -> Bool {
return lhs.position == rhs.position
}
func <<T: Option>(lhs: T, rhs: T) -> Bool {
return lhs.position < rhs.position
}
This allows you to pass objects that conform to the protocol to UIKit, and to also compare them within your swift code.
class A: NSObject, Option { .. }
class B: NSObject, Option { ... }
let a = A()
let b = B()
a == b // compiles, and returns true if a and b have the same position
let c: [Option] = [a, b]
c.sort(<) // returns a sorted array by the `position` field
One important note regarding the sorting code above: if you don't specify the type for c, then the compiler infers its type as [NSObject], and the sort call will not compile due to ambiguity of the < operator. You need to explicitly declare c as [Option] to take advantage of the overloaded operator.
The issue can be fixed by the new protocol oriented programming features introduced in swift 2.0
#objc protocol 'Option' cannot refine non-#objc protocol 'Equatable'
As the error states, the Equatable protocol is a swift protocol that you can't to Obj C context
Protocol 'Option' can only be used as a generic constraint because it
has Self or associated type requirements
You can achieve this in the following way:
#objc protocol Option {
var title: String { get }
var enabled: Bool { get }
var position: Int { get }
}
extension Equatable where Self : Option
{
}
extension Comparable where Self : Option
{
}
func ==(lhs: Option, rhs: Option) -> Bool
{
return lhs.position == rhs.position
}
func <(lhs: Option, rhs: Option) -> Bool
{
return lhs.position < rhs.position
}
func >(lhs: Option, rhs: Option) -> Bool
{
return lhs.position > rhs.position
}
And your class and implementation looks like:
class MyClass: Option
{
#objc var title: String = ""
#objc var enabled: Bool = true
#objc var position: Int = 0
init()
{
}
convenience init(title : String, enabled : Bool, position: Int)
{
self.init()
self.title = title
self.enabled = enabled
self.position = position
}
}
let firstObj = MyClass()
let secondObj = MyClass()
let optionArray : [Option] = [firstObj, secondObj]
// Sort array of options
optionArray.sort(<)

Swift 2 - Protocol conforming to Equatable issue

I have an issue with a protocol I've defined below. I've got two requirements:
I'd like to be able to use the protocol Peer as a type in other classes while keeping the concrete class private.
I'd like to store the protocol in an array and be able to determine the index of an instance.
In order to satisfy the second point, I need to make the protocol conform to the Equatable protocol. But when I do that, I can no longer use Peer as a type, since it needs to be treated as a generic. This means I cannot have the concrete implementation private anymore, and requirement 1 is broken.
Wondering if anyone else has encountered this problem and gotten around it somehow. Maybe I'm misinterpreting the error I'm getting at indexOf...
Group.swift
import Foundation
class Group {
var peers = [Peer]()
init() {
peers.append(PeerFactory.buildPeer("Buddy"))
}
func findPeer(peer: Peer) -> Bool {
if let index = peers.indexOf(peer) {
return true
}
return false
}
}
Peer.swift
import Foundation
protocol Peer {
var name: String { get }
}
class PeerFactory {
static func buildPeer(name: String) -> Peer {
return SimplePeer(name: name)
}
}
private class SimplePeer: Peer {
let name: String
init(name: String) {
self.name = name
}
}
Error at indexOf if Peer is not Equatable:
cannot convert value of type 'Peer' to expected argument type '#noescape (Peer) throws -> Bool'
So I found a solution to get around the Equatable requirement by extending CollectionType to define a new indexOf for elements are of Peer type, which takes advantage of the other closure-based indexOf. This is essentially a convenience function which saves me from using the closure indexOf directly. Code below:
extension CollectionType where Generator.Element == Peer {
func indexOf(element: Generator.Element) -> Index? {
return indexOf({ $0.name == element.name })
}
}
This of course assumes everything I need to test equality can be obtained from the Peer protocol (which is true for my specific use case).
EDIT: Update for Swift 3:
extension Collection where Iterator.Element == Peer {
func indexOf(element: Iterator.Element) -> Index? {
return index(where: { $0.name == element.name })
}
}
I would suggest you use public super class, so the class can conform to Equatable
class Peer: Equatable {
// Read-only computed property so you can override.
// If no need to override, you can simply declare a stored property
var name: String {
get {
fatalError("Should not call Base")
}
}
// should only be called from subclass
private init() {}
}
private class SimplePeer: Peer {
override var name: String {
get {
return _name
}
}
let _name: String
init(name: String) {
_name = name
super.init()
}
}
func == (lhs: Peer, rhs: Peer) -> Bool {
return lhs.name == rhs.name
}
class PeerFactory {
static func buildPeer(name: String) -> Peer {
return SimplePeer(name: name)
}
}

Type does not conform to an undefined protocol

In Xcode 6 Beta 2 I have written the following class:
class Item : Printable, Hashable {
var description:String {
return "..."
}
var hashValue:Int {
return 1
}
}
I am receiving an error stating that the Type 'Item' does not conform to the protocol 'Equatable' even though I have not tried to implement a protocol called 'Equatable.' Has anyone seen behavior like this? Any solution or workaround? thanks!
According to the Hashable docs: (see the very bottom of that page)
Types that conform to the Hashable protocol must provide a gettable Int property called hashValue, and must also provide an implementation of the “is equal” operator (==).
And according to the Equatable docs you do that by defining an operator overload function for == where the type you want is on each side of the operator.
func == (lhs: MyStruct, rhs: MyStruct) -> Bool {
return lhs.name == rhs.name
}
Which means your code something like this:
class Item : Printable, Hashable {
var description:String {
return "..."
}
var hashValue:Int {
return 1
}
}
func == (lhs: Item, rhs: Item) -> Bool {
return lhs.hashValue == rhs.hashValue
}
// Testing...
Item() == Item() //-> true
Assuming hashValue is what you think would make them equivalent, of course.
The Hashable protocol implements the Equatable protocol, hence the reason why the compiler complains

Resources