openCV 3.0 recoverPose wrong results - opencv

Does anyone can using openCV 3.0 recoverPose function with good results?
I've got:
cv::Mat r;
cv::Mat t;
cv::Mat E = cv::findEssentialMat(features1, features2);
cv::recoverPose(E, features1, features1, r, t);
float xAngle = radToDeg(atan2f(r.at<float>(2, 1), r.at<float>(2, 2)));
float yAngle = radToDeg(atan2f(-r.at<float>(2, 0), sqrtf(r.at<float>(2, 1) * r.at<float>(2, 1) + r.at<float>(2, 2) * r.at<float>(2, 2))));
float zAngle = radToDeg(atan2f(r.at<float>(1, 0), r.at<float>(0, 0)));
As input I use one image 1836x1836 dimensions and another image 1836x1836 which is just rotated 90 degrees to the left. I have rotated it using computer program so it is exactly rotate 90 degrees.
I expect result:
xAngle: 0
yAngle: 0
zAngle: 90 (or -90 depending on Z direction)
Unfortunately my results are:
xAngle: 90
yAngle: 0.113659
zAngle: 180
Can anyone help me with it?

The Essential matrix cannot be used to describe pure rotation. If you know that your images are related only by a rotation with no translation, then you have to estimate the homography (aka projective transformation) between them.

Related

world coordinates to camera coordinates to pixel coordinates

I am trying to project a giving 3D point to image plane, I have posted many question regarding this and many people help me, also I read many related links but still the projection doesn't work for me correctly.
I have a 3d point (-455,-150,0) where x is the depth axis and z is the upwards axis and y is the horizontal one I have roll: Rotation around the front-to-back axis (x) , pitch: Rotation around the side-to-side axis (y) and yaw:Rotation around the vertical axis (z) also I have the position on the camera (x,y,z)=(-50,0,100) so I am doing the following
first I am doing from world coordinates to camera coordinates using the extrinsic parameters:
double pi = 3.14159265358979323846;
double yp = 0.033716827630996704* pi / 180; //roll
double thet = 67.362312316894531* pi / 180; //pitch
double k = 89.7135009765625* pi / 180; //yaw
double rotxm[9] = { 1,0,0,0,cos(yp),-sin(yp),0,sin(yp),cos(yp) };
double rotym[9] = { cos(thet),0,sin(thet),0,1,0,-sin(thet),0,cos(thet) };
double rotzm[9] = { cos(k),-sin(k),0,sin(k),cos(k),0,0,0,1};
cv::Mat rotx = Mat{ 3,3,CV_64F,rotxm };
cv::Mat roty = Mat{ 3,3,CV_64F,rotym };
cv::Mat rotz = Mat{ 3,3,CV_64F,rotzm };
cv::Mat rotationm = rotz * roty * rotx; //rotation matrix
cv::Mat mpoint3(1, 3, CV_64F, { -455,-150,0 }); //the 3D point location
mpoint3 = mpoint3 * rotationm; //rotation
cv::Mat position(1, 3, CV_64F, {-50,0,100}); //the camera position
mpoint3=mpoint3 - position; //translation
and now I want to move from camera coordinates to image coordinates
the first solution was: as I read from some sources
Mat myimagepoint3 = mpoint3 * mycameraMatrix;
this didn't work
the second solution was:
double fx = cameraMatrix.at<double>(0, 0);
double fy = cameraMatrix.at<double>(1, 1);
double cx1 = cameraMatrix.at<double>(0, 2);
double cy1= cameraMatrix.at<double>(1, 2);
xt = mpoint3 .at<double>(0) / mpoint3.at<double>(2);
yt = mpoint3 .at<double>(1) / mpoint3.at<double>(2);
double u = xt * fx + cx1;
double v = yt * fy + cy1;
but also didn't work
I also tried to use opencv method fisheye::projectpoints(from world to image coordinates)
Mat recv2;
cv::Rodrigues(rotationm, recv2);
//inputpoints a vector contains one point which is the 3d world coordinate of the point
//outputpoints a vector to store the output point
cv::fisheye::projectPoints(inputpoints,outputpoints,recv2,position,mycameraMatrix,mydiscoff );
but this also didn't work
by didn't work I mean: I know (in the image) where should the point appear but when I draw it, it is always in another place (not even close) sometimes I even got a negative values
note: there is no syntax errors or exceptions but may I made typos while I am writing code here
so can any one suggest if I am doing something wrong?

opencv Vec3d to Eigen::Quaternion, euler flipping on results

I am using opencv::solvePnP to return a camera pose. I run PnP, and it returns the rvec and tvec values.(rotation vector and position).
I then run this function to convert the values to the camera pose:
void GetCameraPoseEigen(cv::Vec3d tvecV, cv::Vec3d rvecV, Eigen::Vector3d &Translate, Eigen::Quaterniond &quats)
{
Mat R;
Mat tvec, rvec;
tvec = DoubleMatFromVec3b(tvecV);
rvec = DoubleMatFromVec3b(rvecV);
cv::Rodrigues(rvec, R); // R is 3x3
R = R.t(); // rotation of inverse
tvec = -R*tvec; // translation of inverse
Eigen::Matrix3d mat;
cv2eigen(R, mat);
Eigen::Quaterniond EigenQuat(mat);
quats = EigenQuat;
double x_t = tvec.at<double>(0, 0);
double y_t = tvec.at<double>(1, 0);
double z_t = tvec.at<double>(2, 0);
Translate.x() = x_t * 10;
Translate.y() = y_t * 10;
Translate.z() = z_t * 10;
}
This works, yet at some rotation angles, the converted rotation values flip randomly between positive and negative values. Yet, the source rvecV value does not. I assume this means I am going wrong with my conversion. How can i get a stable Quaternion from the PnP returned cv::Vec3d?
EDIT: This seems to be Quaternion flipping, as mentioned here:
Quaternion is flipping sign for very similar rotations?
Based on that, i have tried adding:
if(quat.w() < 0)
{
quat = quat.Inverse();
}
But I see the same flipping.
Both quat and -quat represent the same rotation. You can check that by taking a unit quaternion, converting it to a rotation matrix, then doing
quat.coeffs() = -quat.coeffs();
and converting that to a rotation matrix as well.
If for some reason you always want a positive w value, negate all coefficients if w is negative.
The sign should not matter...
... rotation-wise, as long as all four fields of the 4D quaternion are getting flipped. There's more to it explained here:
Quaternion to EulerXYZ, how to differentiate the negative and positive quaternion
Think of it this way:
Angle/axis both flipped mean the same thing
and mind the clockwise to counterclockwise transition much like in a mirror image.
There may be convention to keep the quat.w() or quat[0] component positive and change other components to opposite accordingly. Assume w = cos(angle/2) then setting w > 0 just means: I want angle to be within the (-pi, pi) range. So that the -270 degrees rotation becomes +90 degrees rotation.
Doing the quat.Inverse() is probably not what you want, because this creates a rotation in the opposite direction. That is -quat != quat.Inverse().
Also: check that both systems have the same handedness (chirality)! Test if your rotation matrix determinant is +1 or -1.
(sry for the image link, I don't have enough reputation to embed them).

Rotation matrix to euler angles with opencv

I am working on a project wich involves Aruco markers and opencv.
I am quite far in the project progress. I can read the rotation vectors and convert them to a rodrigues matrix using rodrigues() from opencv.
This is a example of a rodrigues matrix I get:
[0,1,0;
1,0,0;
0,0,-1]
I use the following code.
Mat m33(3, 3, CV_64F);
Mat measured_eulers(3, 1, CV_64F);
Rodrigues(rotationVectors, m33);
measured_eulers = rot2euler(m33);
Degree_euler = measured_eulers * 180 / CV_PI;
I use the predefined rot2euler to convert from rodrigues matrix to euler angles.
And I convert the received radians to degrees.
rot2euler looks like the following.
Mat rot2euler(const Mat & rotationMatrix)
{
Mat euler(3, 1, CV_64F);
double m00 = rotationMatrix.at<double>(0, 0);
double m02 = rotationMatrix.at<double>(0, 2);
double m10 = rotationMatrix.at<double>(1, 0);
double m11 = rotationMatrix.at<double>(1, 1);
double m12 = rotationMatrix.at<double>(1, 2);
double m20 = rotationMatrix.at<double>(2, 0);
double m22 = rotationMatrix.at<double>(2, 2);
double x, y, z;
// Assuming the angles are in radians.
if (m10 > 0.998) { // singularity at north pole
x = 0;
y = CV_PI / 2;
z = atan2(m02, m22);
}
else if (m10 < -0.998) { // singularity at south pole
x = 0;
y = -CV_PI / 2;
z = atan2(m02, m22);
}
else
{
x = atan2(-m12, m11);
y = asin(m10);
z = atan2(-m20, m00);
}
euler.at<double>(0) = x;
euler.at<double>(1) = y;
euler.at<double>(2) = z;
return euler;
}
If I use the rodrigues matrix I give as an example I get the following euler angles.
[0; 90; -180]
But I am suppose to get the following.
[-180; 0; 90]
When is use this tool http://danceswithcode.net/engineeringnotes/rotations_in_3d/demo3D/rotations_in_3d_tool.html
You can see that [0; 90; -180] doesn't match the rodrigues matrix but [-180; 0; 90] does. (I am aware of the fact that the tool works with ZYX coordinates)
So the problem is I get the correct values but in a wrong order.
Another problem is that this isn't always the case.
For example rodrigues matrix:
[1,0,0;
0,-1,0;
0,0,-1]
Provides me the correct euler angles.
If someone knows a solution to the problem or can provide me with a explanation how the rot2euler function works exactly. It will be higly appreciated.
Kind Regards
Brent Convens
I guess I am quite late but I'll answer it nonetheless.
Dont quote me on this, ie I'm not 100 % certain but this is one
of the files ( {OPENCV_INSTALLATION_DIR}/apps/interactive-calibration/rotationConverters.cpp ) from the source code of openCV 3.3
It seems to me that openCV is giving you Y-Z-X ( similar to what is being shown in the code above )
Why I said I wasn't sure because I just looked at the source code of cv::Rodrigues and it doesnt seem to call this piece of code that I have shown above. The Rodrigues function has the math harcoded into it ( and I think it can be checked by Taking the 2 rotation matrices and multiplying them as - R = Ry * Rz * Rx and then looking at the place in the code where there is a acos(R(2,0)) or asin(R(0,2) or something similar,since one of the elements of "R" will usually be a cos() or sine which will give you a solution as to which angle is being found.
Not specific to OpenCV, but you could write something like this:
cosine_for_pitch = math.sqrt(pose_mat[0][0] ** 2 + pose_mat[1][0] ** 2)
is_singular = cosine_for_pitch < 10**-6
if not is_singular:
yaw = math.atan2(pose_mat[1][0], pose_mat[0][0])
pitch = math.atan2(-pose_mat[2][0], cosine_for_pitch)
roll = math.atan2(pose_mat[2][1], pose_mat[2][2])
else:
yaw = math.atan2(-pose_mat[1][2], pose_mat[1][1])
pitch = math.atan2(-pose_mat[2][0], cosine_for_pitch)
roll = 0
Here, you could explore more:
https://www.learnopencv.com/rotation-matrix-to-euler-angles/
http://www.staff.city.ac.uk/~sbbh653/publications/euler.pdf
I propose to use the PCL library to do that with this formulation
pcl::getEulerAngles(transformatoin,roll,pitch,yaw);
you need just to initialize the roll, pitch, yaw and a pre-calculated transformation matrix you can do it

OpenCV + OpenGL: proper camera pose using solvePnP

I've got problem with obtaining proper camera pose from iPad camera using OpenCV.
I'm using custom made 2D marker (based on AruCo library ) - I want to render 3D cube over that marker using OpenGL.
In order to recieve camera pose I'm using solvePnP function from OpenCV.
According to THIS LINK I'm doing it like this:
cv::solvePnP(markerObjectPoints, imagePoints, [self currentCameraMatrix], _userDefaultsManager.distCoeffs, rvec, tvec);
tvec.at<double>(0, 0) *= -1; // I don't know why I have to do it, but translation in X axis is inverted
cv::Mat R;
cv::Rodrigues(rvec, R); // R is 3x3
R = R.t(); // rotation of inverse
tvec = -R * tvec; // translation of inverse
cv::Mat T(4, 4, R.type()); // T is 4x4
T(cv::Range(0, 3), cv::Range(0, 3)) = R * 1; // copies R into T
T(cv::Range(0, 3), cv::Range(3, 4)) = tvec * 1; // copies tvec into T
double *p = T.ptr<double>(3);
p[0] = p[1] = p[2] = 0;
p[3] = 1;
camera matrix & dist coefficients are coming from findChessboardCorners function, imagePoints are manually detected corners of marker (you can see them as green square in the video posted below), and markerObjectPoints are manually hardcoded points that represents marker corners:
markerObjectPoints.push_back(cv::Point3d(-6, -6, 0));
markerObjectPoints.push_back(cv::Point3d(6, -6, 0));
markerObjectPoints.push_back(cv::Point3d(6, 6, 0));
markerObjectPoints.push_back(cv::Point3d(-6, 6, 0));
Because marker is 12 cm long in real world, I've chosed the same size in the for easier debugging.
As a result I'm recieving 4x4 matrix T, that I'll use as ModelView matrix in OpenCV.
Using GLKit drawing function looks more or less like this:
- (void)glkView:(GLKView *)view drawInRect:(CGRect)rect {
// preparations
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float aspect = fabsf(self.bounds.size.width / self.bounds.size.height);
effect.transform.projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(39), aspect, 0.1f, 1000.0f);
// set modelViewMatrix
float mat[16] = generateOpenGLMatFromFromOpenCVMat(T);
currentModelMatrix = GLKMatrix4MakeWithArrayAndTranspose(mat);
effect.transform.modelviewMatrix = currentModelMatrix;
[effect prepareToDraw];
glDrawArrays(GL_TRIANGLES, 0, 36); // draw previously prepared cube
}
I'm not rotating everything for 180 degrees around X axis (as it was mentioned in previously linked article), because I doesn't look as necessary.
The problem is that it doesn't work! Translation vector looks OK, but X and Y rotations are messed up :(
I've recorded a video presenting that issue:
http://www.youtube.com/watch?v=EMNBT5H7-os
I've tried almost everything (including inverting all axises one by one), but nothing actually works.
What should I do? How should I properly display that 3D cube? Translation / rotation vectors that come from solvePnP are looking reasonable, so I guess that I can't correctly map these vectors to OpenGL matrices.
Thanks to Djo1509 from http://answers.opencv.org/ I've found out that the problem was unnecessary transposed rotation matrix R matrix used as part of matrix T, and unnecessary tvec = -R * tvec operation.
For more info look there

Calculate distance (disparity) OpenCV

-- Update 2 --
The following article is really useful (although it is using Python instead of C++) if you are using a single camera to calculate the distance: Find distance from camera to object/marker using Python and OpenCV
Best link is Stereo Webcam Depth Detection. The implementation of this open source project is really clear.
Below is the original question.
For my project I am using two camera's (stereo vision) to track objects and to calculate the distance. I calibrated them with the sample code of OpenCV and generated a disparity map.
I already implemented a method to track objects based on color (this generates a threshold image).
My question: How can I calculate the distance to the tracked colored objects using the disparity map/ matrix?
Below you can find a code snippet that gets the x,y and z coordinates of each pixel. The question: Is Point.z in cm, pixels, mm?
Can I get the distance to the tracked object with this code?
Thank you in advance!
cvReprojectImageTo3D(disparity, Image3D, _Q);
vector<CvPoint3D32f> PointArray;
CvPoint3D32f Point;
for (int y = 0; y < Image3D->rows; y++) {
float *data = (float *)(Image3D->data.ptr + y * Image3D->step);
for (int x = 0; x < Image3D->cols * 3; x = x + 3)
{
Point.x = data[x];
Point.y = data[x+1];
Point.z = data[x+2];
PointArray.push_back(Point);
//Depth > 10
if(Point.z > 10)
{
printf("%f %f %f", Point.x, Point.y, Point.z);
}
}
}
cvReleaseMat(&Image3D);
--Update 1--
For example I generated this thresholded image (of the left camera). I almost have the same of the right camera.
Besides the above threshold image, the application generates a disparity map. How can I get the Z-coordinates of the pixels of the hand in the disparity map?
I actually want to get all the Z-coordinates of the pixels of the hand to calculate the average Z-value (distance) (using the disparity map).
See this links: OpenCV: How-to calculate distance between camera and object using image?, Finding distance from camera to object of known size, http://answers.opencv.org/question/5188/measure-distance-from-detected-object-using-opencv/
If it won't solve you problem, write more details - why it isn't working, etc.
The math for converting disparity (in pixels or image width percentage) to actual distance is pretty well documented (and not very difficult) but I'll document it here as well.
Below is an example given a disparity image (in pixels) and an input image width of 2K (2048 pixels across) image:
Convergence Distance is determined by the rotation between camera lenses. In this example it will be 5 meters. Convergence distance of 5 (meters) means that the disparity of objects 5 meters away is 0.
CD = 5 (meters)
Inverse of convergence distance is: 1 / CD
IZ = 1/5 = 0.2M
Size of camera's sensor in meters
SS = 0.035 (meters) //35mm camera sensor
The width of a pixel on the sensor in meters
PW = SS/image resolution = 0.035 / 2048(image width) = 0.00001708984
The focal length of your cameras in meters
FL = 0.07 //70mm lens
InterAxial distance: The distance from the center of left lens to the center of right lens
IA = 0.0025 //2.5mm
The combination of the physical parameters of your camera rig
A = FL * IA / PW
Camera Adjusted disparity: (For left view only, right view would use positive [disparity value])
AD = 2 * (-[disparity value] / A)
From here you can compute actual distance using the following equation:
realDistance = 1 / (IZ – AD)
This equation only works for "toe-in" camera systems, parallel camera rigs will use a slightly different equation to avoid infinity values, but I'll leave it at this for now. If you need the parallel stuff just let me know.
if len(puntos) == 2:
x1, y1, w1, h1 = puntos[0]
x2, y2, w2, h2 = puntos[1]
if x1 < x2:
distancia_pixeles = abs(x2 - (x1+w1))
distancia_cm = (distancia_pixeles*29.7)/720
cv2.putText(imagen_A4, "{:.2f} cm".format(distancia_cm), (x1+w1+distancia_pixeles//2, y1-30), 2, 0.8, (0,0,255), 1,
cv2.LINE_AA)
cv2.line(imagen_A4,(x1+w1,y1-20),(x2, y1-20),(0, 0, 255),2)
cv2.line(imagen_A4,(x1+w1,y1-30),(x1+w1, y1-10),(0, 0, 255),2)
cv2.line(imagen_A4,(x2,y1-30),(x2, y1-10),(0, 0, 255),2)
else:
distancia_pixeles = abs(x1 - (x2+w2))
distancia_cm = (distancia_pixeles*29.7)/720
cv2.putText(imagen_A4, "{:.2f} cm".format(distancia_cm), (x2+w2+distancia_pixeles//2, y2-30), 2, 0.8, (0,0,255), 1,
cv2.LINE_AA)
cv2.line(imagen_A4,(x2+w2,y2-20),(x1, y2-20),(0, 0, 255),2)
cv2.line(imagen_A4,(x2+w2,y2-30),(x2+w2, y2-10),(0, 0, 255),2)
cv2.line(imagen_A4,(x1,y2-30),(x1, y2-10),(0, 0, 255),2)
cv2.imshow('imagen_A4',imagen_A4)
cv2.imshow('frame',frame)
k = cv2.waitKey(1) & 0xFF
if k == 27:
break
cap.release()
cv2.destroyAllWindows()
I think this is a good way to measure the distance between two objects

Resources