Confused at transferring an ambiguous grammar to an unambiguous one - parsing

An ambiguous grammar is given and I am asked to rewrite the grammar to make it unambiguous. In fact, I don't know why the given grammar is ambiguous, let alone rewriting it to an unambiguous one.
The given grammar is S -> SS | a | b , and I have four choices:
A: S -> Sa | Sb | epsilon
B: S -> SS’
S’-> a | b
C: S -> S | S’
S’-> a | b
D: S -> Sa | Sb.
For each choice, I have already know that D is incorrect because it generates no strings at all,C is incorrect because it only matches the strings 'a' and 'b'.
However, I think the answer is A while the correct answer is B.I think B is wrong because it just generates S over and over again, and B can't deal with empty strings.
Why is the given grammar ambiguous?
Why is A incorrect while B is correct?

The original grammar is ambiguous because multiple right-most (or left-most) derivations are possible for any string of at least three letters. For example:
S -> SS -> SSS -> SSa -> Saa -> aaa
S -> SS -> Sa -> SSa -> Saa -> aaa
The first one corresponds, roughly speaking, to the parse a(aa) while the second to the parse (aa)a.
None of the alternatives is correct. A incorrectly matches ε while B does not match anything (like D). If B were, for example,
S -> SS' | S'
S' -> a | b
it would be correct. (This grammar is left-associative.)

Related

Find a s-grammar (simple grammar)

find a simple grammar (a.k.a s-grammar) for the following language:
L={(ab)2mb :m>=0}
[i did this but it is wrong]
S-> aASBB|b
A-> a
B->b
What about this?
S -> aA | T
A -> bB
B -> aC
C -> bS
T -> b
This is a regular grammar - all productions of the form X -> sY or X -> t, and corresponds to a minimal DFA for the language in question via a direct mapping of productions to transactions and nonterminal symbols to states.

Is it possible to transform this grammar to be LR(1)?

The following grammar generates the sentences a, a, a, b, b, b, ..., h, b. Unfortunately it is not LR(1) so cannot be used with tools such as "yacc".
S -> a comma a.
S -> C comma b.
C -> a | b | c | d | e | f | g | h.
Is it possible to transform this grammar to be LR(1) (or even LALR(1), LL(k) or LL(1)) without the need to expand the nonterminal C and thus significantly increase the number of productions?
Not as long as you have the nonterminal C unchanged preceding comma in some rule.
In that case it is clear that a parser cannot decide, having seen an "a", and having lookahead "comma", whether to reduce or shift. So with C unchanged, this grammar is not LR(1), as you have said.
But the solution lies in the two phrases, "having seen an 'a'" and "C unchanged". You asked if there's fix that doesn't expand C. There isn't, but you could expand C "a little bit" by removing "a" from C, since that's the source of the problem:
S -> a comma a .
S -> a comma b .
S -> C comma b .
C -> b | c | d | e | f | g | h .
So, we did not "significantly" increase the number of productions.

can removing left recursion introduce ambiguity?

Let's assume we have the following CFG G:
A -> A b A
A -> a
Which should produce the strings
a, aba, ababa, abababa, and so on. Now I want to remove the left recursion to make it suitable for predictive parsing. The dragon book gives the following rule to remove immediate left recursions.
Given
A -> Aa | b
rewrite as
A -> b A'
A' -> a A'
| ε
If we simply apply the rule to the grammar from above, we get grammar G':
A -> a A'
A' -> b A A'
| ε
Which looks good to me, but apparently this grammar is not LL(1), because of some ambiguity. I get the following First/Follow sets:
First(A) = { "a" }
First(A') = { ε, "b" }
Follow(A) = { $, "b" }
Follow(A') = { $, "b" }
From which I construct the parsing table
| a | b | $ |
----------------------------------------------------
A | A -> a A' | | |
A' | | A' -> b A A' | A' -> ε |
| | A' -> ε | |
and there is a conflict in T[A',b], so the grammar isn't LL(1), although there are no left recursions any more and there are also no common prefixes of the productions so that it would require left factoring.
I'm not completely sure where the ambiguity comes from. I guess that during parsing the stack would fill with S'. And you can basically remove it (reduce to epsilon), if it isn't needed any more. I think this is the case if another S' is below on on the stack.
I think the LL(1) grammar G'' that I try to get from the original one would be:
A -> a A'
A' -> b A
| ε
Am I missing something? Did I do anything wrong?
Is there a more general procedure for removing left recursion that considers this edge case? If I want to automatically remove left recursions I should be able to handle this, right?
Is the second grammar G' a LL(k) grammar for some k > 1?
The original grammar was ambiguous, so it is not surprising that the new grammar is also ambiguous.
Consider the string a b a b a. We can derive this in two ways from the original grammar:
A ⇒ A b A
⇒ A b a
⇒ A b A b a
⇒ A b a b a
⇒ a b a b a
A ⇒ A b A
⇒ A b A b A
⇒ A b A b a
⇒ A b a b a
⇒ a b a b a
Unambiguous grammars are, of course possible. Here are right- and left-recursive versions:
A ⇒ a A ⇒ a
A ⇒ a b A A ⇒ A b a
(Although these represent the same language, they have different parses: the right-recursive version associates to the right, while the left-recursive one associates to the left.)
Removing left recursion cannot introduce ambiguity. This kind of transformation preserves ambiguity. If the CFG is already ambiguous, the result will be ambiguous too, and if the original is not, the resulting neither.

Correct Unrestricted Grammar for:

I can't seem to figure out the Unrestricted Grammar for
L = (w am bn | w={a,b}* m=number of a's in w n=number of b's in w).
I've constructed the following grammar for it, but it keeps rejecting every string I enter in JFLAP. But manually creating a parse tree for it gives me no problem. Can anyone look at it for me and see what's wrong?
S -> AST | BSU | epsilon
UT -> TU
T -> A
U -> B
A -> a
B -> b
I've downloaded and used JFLAP on your grammar. I think the issue is that you have not used the notation that JFLAP does for grammar entry. It does not used the | symbol, but you have to supply several rules instead. Therefore in JFLAP notation (and still and valid grammar) you would have:
S -> AST
S -> BSU
S -> ε
UT -> TU
T -> A
U -> B
A -> a
B -> b
You would also need to set the empty string as ε in the FLAP preferences. If you can manually create a parse tree you can also do this in JFLAP to show the derivations.

Can a table-based LL parser handle repetition without right-recursion?

I understand how an LL recursive descent parser can handle rules of this form:
A = B*;
with a simple loop that checks whether to continue looping or not based on whether the lookahead token matches a terminal in the FIRST set of B. However, I'm curious about table based LL parsers: how can rules of this form work there? As far as I know, the only way to handle repetition like this in one is through right-recursion, but that messes up associativity in cases where a right-associative parse tree is not desired.
I'd like to know because I'm currently attempting to write an LL(1) table-based parser generator and I'm not sure how to handle a case like this without changing the intended parse tree shape.
The Grammar
Let's expand your EBNF grammar to simple BNF and assume, that b is a terminal and <e> is an empty string:
A -> X
X -> BX
X -> <e>
B -> b
This grammar produces strings of terminal b's of any length.
The LL(1) Table
To construct the table, we will need to generate the first and follow sets (constructing an LL(1) parsing table).
First sets
First(α) is the set of terminals that begin strings derived from any string of grammar symbols α.
First(A) : b, <e>
First(X) : b, <e>
First(B) : b
Follow sets
Follow(A) is the set of terminals a that can
appear immediately to the right of a nonterminal A.
Follow(A) : $
Follow(X) : $
Follow(B) : b$
Table
We can now construct the table based on the sets, $ is the end of input marker.
+---+---------+----------+
| | b | $ |
+---+---------+----------+
| A | A -> X | A -> X |
| X | X -> BX | X -> <e> |
| B | B -> b | |
+---+---------+----------+
The parser action always depends on the top of the parse stack and the next input symbol.
Terminal on top of the parse stack:
Matches the input symbol: pop stack, advance to the next input symbol
No match: parse error
Nonterminal on top of the parse stack:
Parse table contains production: apply production to stack
Cell is empty: parse error
$ on top of the parse stack:
$ is the input symbol: accept input
$ is not the input symbol: parse error
Sample Parse
Let us analyze the input bb. The initial parse stack contains the start symbol and the end marker A $.
+-------+-------+-----------+
| Stack | Input | Action |
+-------+-------+-----------+
| A $ | bb$ | A -> X |
| X $ | bb$ | X -> BX |
| B X $ | bb$ | B -> b |
| b X $ | bb$ | consume b |
| X $ | b$ | X -> BX |
| B X $ | b$ | B -> b |
| b X $ | b$ | consume b |
| X $ | $ | X -> <e> |
| $ | $ | accept |
+-------+-------+-----------+
Conclusion
As you can see, rules of the form A = B* can be parsed without problems. The resulting concrete parse tree for input bb would be:
Yes, this is definitely possible. The standard method of rewriting to BNF and constructing a parse table is useful for figuring out how the parser should work – but as far as I can tell, what you're asking is how you can avoid the recursive part, which would mean that you'd get the slanted binary tree/linked list form of AST.
If you're hand-coding the parser, you can simply use a loop, using the lookaheads from the parse table that indicate a recursive call to decide to go around the loop once more. (I.e., you could just use while with those lookaheads as the condition.) Then for each iteration, you simply append the constructed subtree as a child of the current parent. In your case, then, A would get several direct B-children.
Now, as I understand it, you're building a parser generator, and it might be easiest to follow the standard procedure, going via plan BNF. However, that's not really an issue; there is no substantive difference between iteration and recursion, after all. You simply have to have a class of “helper rules” that don't introduce new AST nodes, but that rather append their result to the node of the nonterminal that triggered them. So when turning the repetition into X -> BX, rather than constructing X nodes, you have your X rule extend the child-list of the A or X (whichever triggered it) by its own children. You'll still end up with A having several B children, and no X nodes in sight.

Resources