I would like to have a convenience method on my class like so:
class BaseEvent {
class func on(executionHandler: (BaseEvent -> Void)) -> Handler<BaseEvent> {
return Handler<BaseEvent>(executionHandler: executionHandler)
}
}
This has the downside that execution handler doesn't have the correct type for subclasses of BaseEvent. Imagine I had a class called JumpEvent that derived from BaseEvent, in an ideal world I would be able to do the following:
let handler = JumpEvent.on { event in
//Do something with jump event
}
Unfortunately the event is of type BaseEvent and would have to be downcast.
I've tried the following, with no luck:
class func on(executionHandler: (Self -> Void)) -> Handler<BaseEvent> {
return Handler<BaseEvent>(executionHandler: executionHandler)
}
class func on<T: Self>(executionHandler: (T -> Void)) -> Handler<BaseEvent> {
return Handler<BaseEvent>(executionHandler: executionHandler)
}
Note that the return type (Handler<BaseEvent>) isn't very important, just the type of the execution handler.
My current "solution" is the following, which requires manually redefining the method in subclasses which is obviously less than ideal:
class BaseEvent {
class func on<T: BaseEvent>(executionHandler: (T -> Void)) -> Handler<T> {
return Handler<T>(executionHandler: executionHandler)
}
}
class JumpEvent: BaseEvent {
override class func on<T: JumpEvent>(executionHandler: (T -> Void)) -> Handler<T> {
return super.on(executionHandler)
}
}
Please let me know if additional information is needed.
Thank you,
Noah
I ultimately rethought my implementation and achieved the desired results with generics. This might not work for all use cases, but it worked well for mine because the subclasses were the same as the base class except for their associated model object. So BaseEvent and JumpEvent changed to:
protocol ModelType {
}
class Jump: ModelType {
}
class Event<T: ModelType> {
class func on(executionHandler: (Event<T> -> Void)) -> Handler<T> {
return Handler<T>(executionHandler: executionHandler)
}
}
This allows me to reuse functionality like I did with BaseEvent, with the added benefit that I don't need to create a new subclass for each model object.
Related
How can we call class functions with a dynamic class name?
Assume the following example where I have two class with methods with same signature
class Foo{
class func doSomething()
}
class Foobar {
class func doSomething()
}
class ActualWork{
//call following method with a variable type so that it accepts dynamic class name
func callDynamicClassMethod(x: dynamicClass)
x.doSomething()
}
How can this be implemented so that x accepts values at run time
Edit: Sorry, I missed to mention that I was looking for any other ways other than protocol oriented approach. This is more of an exploratory question to explore if there is a more direct approach/pods/libraries to achieve this.
I liked this question, because it made me to think a lit'bit outside of the box.
I'll answer it, by dividing it into a few parts.
First
call class functions
Class function is basically a Type methods, which can be achieved using the static word inside the class context.
Taking that into account, you can get a simple solution, using protocol and passing the class reference (conforming to that protocol) like this:
protocol Aaa{
static func doSomething();
}
class Foo : Aaa{
static func doSomething() {
print("Foo doing something");
}
}
class FooBar : Aaa{
static func doSomething() {
print("FooBar doing something");
}
}
class ActualWork{
//Using class (static) method
func callDynamicClassMethod <T: Aaa> (x: T.Type) {
x.doSomething();
}
}
//This is how you can use it
func usage(){
let aw = ActualWork();
aw.callDynamicClassMethod(x: Foo.self);
aw.callDynamicClassMethod(x: Foo.self);
}
Second
In case you don't really need the method on the class context, you may consider using instance methods. In that case the solution would be even simpler, like this:
protocol Bbb{
func doSomething();
}
class Bar : Bbb{
func doSomething() {
print("Bar instance doing something");
}
}
class BarBar : Bbb{
func doSomething() {
print("BarBar instance doing something");
}
}
class ActualWork{
//Using instance (non-static) method
func callDynamicInstanceMethod <T: Bbb> (x: T){
x.doSomething();
}
}
//This is how you can use it
func usage(){
let aw = ActualWork();
aw.callDynamicInstanceMethod(x: Bar());
aw.callDynamicInstanceMethod(x: BarBar());
}
Third
If you need to use the class func syntax, as OP originally did:
class func doSomething()
You CANNOT simply use a protocol. Because protocol is not a class...
So compiler won't allow it.
But it's still possible, you can achieve that by using
Selector with NSObject.perform method
like this:
class ActualWork : NSObject{
func callDynamicClassMethod<T: NSObject>(x: T.Type, methodName: String){
x.perform(Selector(methodName));
}
}
class Ccc : NSObject{
#objc class func doSomething(){
print("Ccc class Doing something ");
}
}
class Ddd : NSObject{
#objc class func doSomething(){
print("Ccc class Doing something ");
}
#objc class func doOther(){
print("Ccc class Doing something ");
}
}
//This is how you can use it
func usage() {
let aw = ActualWork();
aw.callDynamicClassMethod(x: Ccc.self, methodName: "doSomething");
aw.callDynamicClassMethod(x: Ddd.self, methodName: "doSomething");
aw.callDynamicClassMethod(x: Ddd.self, methodName: "doOther");
}
Generics and Protocol oriented programming will do the job:
protocol Doable {
static func doSomething()
}
class Foo: Doable {
static func doSomething() {
debugPrint("Foo")
}
}
class Foobar: Doable {
static func doSomething() {
debugPrint("Foobar")
}
}
class ActualWork {
func callDynamicClassMethod<T: Doable>(x: T.Type) {
x.doSomething()
}
}
let work = ActualWork()
work.callDynamicClassMethod(x: Foo.self)
work.callDynamicClassMethod(x: Foobar.self)
you can achieve this with help of Protocol
protocol common {
static func doSomething()
}
class Foo : common{
static func doSomething() {
print("Foo")
}
}
class Foobar : common {
static func doSomething() {
print("Foobar")
}
}
class ActualWork{
//call following method with a variable type so that it accepts dynamic class name
func callDynamicClassMethod(x: common.Type) {
x.doSomething()
}
}
let fooObj : common = Foo()
let Foobarobj : common = Foobar()
let workObk = ActualWork()
workObk.callDynamicClassMethod(x:Foo.self)
workObk.callDynamicClassMethod(x:Foobar.self)
I think, there are three solutions. I shared an sample below.
Use "protocol" that has "doSomething()" function requirements.
Create a function which gets function definition as a parameter.
Use reflection. you can use EVReflection that is good Api for reflection.
sample code:
protocol FooProtocol {
static func doSomething()
}
class Foo: FooProtocol {
class func doSomething() {
print("Foo:doSomething")
}
}
class Foobar: FooProtocol {
class func doSomething() {
print("Foobar:doSomething")
}
}
class ActualWork {
func callDynamicClassMethod<T: FooProtocol>(x: T.Type) {
x.doSomething()
}
func callDynamicClassMethod(x: #autoclosure () -> Void) {
x()
}
func callDynamicClassMethod(x: () -> Void) {
x()
}
}
ActualWork().callDynamicClassMethod(x: Foo.self)
ActualWork().callDynamicClassMethod(x: Foobar.self)
print("\n")
ActualWork().callDynamicClassMethod(x: Foo.doSomething())
ActualWork().callDynamicClassMethod(x: Foobar.doSomething())
print("\n")
ActualWork().callDynamicClassMethod(x: Foo.doSomething)
ActualWork().callDynamicClassMethod(x: Foobar.doSomething)
Looks like you are searching for duck typing, and this is harder to achieve in a statically typed language (with some exceptions, listed in the linked Wikipedia page).
This is because dynamically calling a method requires knowledge about the layout of the target object, thus either inheritance of the class declaring the method, or conformance to a protocol that requires that method.
Starting with Swift 4.2, and the introduction of dynamic member lookup, there is another approach to solve your problem, however it also involves some ceremony:
// This needs to be used as base of all classes that you want to pass
// as arguments
#dynamicMemberLookup
class BaseDynamicClass {
subscript(dynamicMember member: String) -> () -> Void {
return { /* empty closure do nothing */ }
}
}
// subclasses can choose to respond to member queries any way they like
class Foo: BaseDynamicClass {
override subscript(dynamicMember member: String) -> () -> Void {
if member == "doSomething" { return doSomething }
return super[dynamicMember: member]
}
func doSomething() {
print("Dynamic from Foo")
}
}
class Bar: BaseDynamicClass {
override subscript(dynamicMember member: String) -> () -> Void {
if member == "doSomething" { return doSomething }
return super[dynamicMember: member]
}
func doSomething() {
print("Dynamic from Bar")
}
}
func test(receiver: BaseDynamicClass) {
receiver.doSomething()
}
test(receiver: Bar()) // Dynamic from Bar
To conclude, in the current Swift version there is no way to have both the argument and the method dynamic, some common ground needs to be set.
I'm having a problem when overriding a function from the ReSwift Pod. I've got the following mock class:
import Foundation
import Quick
import Nimble
import RxSwift
#testable import MainProject
#testable import ReSwift
class MockReSwiftStore: ReSwift.Store<MainState> {
var dispatchDidRun: Bool = false
var subscribeWasTriggered: Bool = false
init() {
let reducer: Reducer<MainState> = {_, _ in MainState() }
super.init(reducer: reducer, state: nil)
}
required init(
reducer: #escaping (Action, State?) -> State,
state: State?,
middleware: [(#escaping DispatchFunction, #escaping () -> State?) -> (#escaping DispatchFunction) -> DispatchFunction]) {
super.init(reducer: reducer, state: state, middleware: middleware)
}
override func subscribe<SelectedState, S>(
_ subscriber: S,
transform: ((Subscription<MainState>) -> Subscription<SelectedState>)?)
where S: StoreSubscriber,
S.StoreSubscriberStateType == SelectedState {
subscribeWasTriggered = true
}
}
}
And when overriding the subscribe method I'm getting following errors
Then when using autocomplete it also shows 2 occurences:
However when looking for the original function there's only one which looks like this
open func subscribe<SelectedState, S: StoreSubscriber>(
_ subscriber: S, transform: ((Subscription<State>) -> Subscription<SelectedState>)?
) where S.StoreSubscriberStateType == SelectedState
{
// Create a subscription for the new subscriber.
let originalSubscription = Subscription<State>()
// Call the optional transformation closure. This allows callers to modify
// the subscription, e.g. in order to subselect parts of the store's state.
let transformedSubscription = transform?(originalSubscription)
_subscribe(subscriber, originalSubscription: originalSubscription,
transformedSubscription: transformedSubscription)
}
This is my compiler output
I'm out of ideas so any help is greatly appreciated
Thanks!
Here is your issue:
class Some<T> {
func echo() {
print("A")
}
}
extension Some where T: Equatable {
func echo() {
print("B")
}
}
class AnotherSome: Some<String> {
override func echo() {
print("Doesn't compile")
}
}
The problem is: ReSwift developers declare Store.subscribe behavior as a part of interface and as a part of extension (I am not sure why they chose to do it instead of introducing other objects). Swift can't figure out which part you are trying to override and thus it doesn't compile. Afaik there are no language instruments which allow you to resolve this issue.
A possible solution is to implement MockStore as a StoreType and use Store object to implement behavior for StoreType interface.
I have a protocol P that returns a copy of the object:
protocol P {
func copy() -> Self
}
and a class C that implements P:
class C : P {
func copy() -> Self {
return C()
}
}
However, whether I put the return value as Self I get the following error:
Cannot convert return expression of type 'C' to return type 'Self'
I also tried returning C.
class C : P {
func copy() -> C {
return C()
}
}
That resulted in the following error:
Method 'copy()' in non-final class 'C' must return Self to conform
to protocol 'P'
Nothing works except for the case where I prefix class C with final ie do:
final class C : P {
func copy() -> C {
return C()
}
}
However if I want to subclass C then nothing would work. Is there any way around this?
The problem is that you're making a promise that the compiler can't prove you'll keep.
So you created this promise: Calling copy() will return its own type, fully initialized.
But then you implemented copy() this way:
func copy() -> Self {
return C()
}
Now I'm a subclass that doesn't override copy(). And I return a C, not a fully-initialized Self (which I promised). So that's no good. How about:
func copy() -> Self {
return Self()
}
Well, that won't compile, but even if it did, it'd be no good. The subclass may have no trivial constructor, so D() might not even be legal. (Though see below.)
OK, well how about:
func copy() -> C {
return C()
}
Yes, but that doesn't return Self. It returns C. You're still not keeping your promise.
"But ObjC can do it!" Well, sort of. Mostly because it doesn't care if you keep your promise the way Swift does. If you fail to implement copyWithZone: in the subclass, you may fail to fully initialize your object. The compiler won't even warn you that you've done that.
"But most everything in ObjC can be translated to Swift, and ObjC has NSCopying." Yes it does, and here's how it's defined:
func copy() -> AnyObject!
So you can do the same (there's no reason for the ! here):
protocol Copyable {
func copy() -> AnyObject
}
That says "I'm not promising anything about what you get back." You could also say:
protocol Copyable {
func copy() -> Copyable
}
That's a promise you can make.
But we can think about C++ for a little while and remember that there's a promise we can make. We can promise that we and all our subclasses will implement specific kinds of initializers, and Swift will enforce that (and so can prove we're telling the truth):
protocol Copyable {
init(copy: Self)
}
class C : Copyable {
required init(copy: C) {
// Perform your copying here.
}
}
And that is how you should perform copies.
We can take this one step further, but it uses dynamicType, and I haven't tested it extensively to make sure that is always what we want, but it should be correct:
protocol Copyable {
func copy() -> Self
init(copy: Self)
}
class C : Copyable {
func copy() -> Self {
return self.dynamicType(copy: self)
}
required init(copy: C) {
// Perform your copying here.
}
}
Here we promise that there is an initializer that performs copies for us, and then we can at runtime determine which one to call, giving us the method syntax you were looking for.
With Swift 2, we can use protocol extensions for this.
protocol Copyable {
init(copy:Self)
}
extension Copyable {
func copy() -> Self {
return Self.init(copy: self)
}
}
There is another way to do what you want that involves taking advantage of Swift's associated type. Here's a simple example:
public protocol Creatable {
associatedtype ObjectType = Self
static func create() -> ObjectType
}
class MyClass {
// Your class stuff here
}
extension MyClass: Creatable {
// Define the protocol function to return class type
static func create() -> MyClass {
// Create an instance of your class however you want
return MyClass()
}
}
let obj = MyClass.create()
Actually, there is a trick that allows to easily return Self when required by a protocol (gist):
/// Cast the argument to the infered function return type.
func autocast<T>(some: Any) -> T? {
return some as? T
}
protocol Foo {
static func foo() -> Self
}
class Vehicle: Foo {
class func foo() -> Self {
return autocast(Vehicle())!
}
}
class Tractor: Vehicle {
override class func foo() -> Self {
return autocast(Tractor())!
}
}
func typeName(some: Any) -> String {
return (some is Any.Type) ? "\(some)" : "\(some.dynamicType)"
}
let vehicle = Vehicle.foo()
let tractor = Tractor.foo()
print(typeName(vehicle)) // Vehicle
print(typeName(tractor)) // Tractor
Swift 5.1 now allow a forced cast to Self, as! Self
1> protocol P {
2. func id() -> Self
3. }
9> class D : P {
10. func id() -> Self {
11. return D()
12. }
13. }
error: repl.swift:11:16: error: cannot convert return expression of type 'D' to return type 'Self'
return D()
^~~
as! Self
9> class D : P {
10. func id() -> Self {
11. return D() as! Self
12. }
13. } //works
Following on Rob's suggestion, this could be made more generic with associated types. I've changed the example a bit to demonstrate the benefits of the approach.
protocol Copyable: NSCopying {
associatedtype Prototype
init(copy: Prototype)
init(deepCopy: Prototype)
}
class C : Copyable {
typealias Prototype = C // <-- requires adding this line to classes
required init(copy: Prototype) {
// Perform your copying here.
}
required init(deepCopy: Prototype) {
// Perform your deep copying here.
}
#objc func copyWithZone(zone: NSZone) -> AnyObject {
return Prototype(copy: self)
}
}
I had a similar problem and came up with something that may be useful so I though i'd share it for future reference because this is one of the first places I found when searching for a solution.
As stated above, the problem is the ambiguity of the return type for the copy() function. This can be illustrated very clearly by separating the copy() -> C and copy() -> P functions:
So, assuming you define the protocol and class as follows:
protocol P
{
func copy() -> P
}
class C:P
{
func doCopy() -> C { return C() }
func copy() -> C { return doCopy() }
func copy() -> P { return doCopy() }
}
This compiles and produces the expected results when the type of the return value is explicit. Any time the compiler has to decide what the return type should be (on its own), it will find the situation ambiguous and fail for all concrete classes that implement the P protocol.
For example:
var aC:C = C() // aC is of type C
var aP:P = aC // aP is of type P (contains an instance of C)
var bC:C // this to test assignment to a C type variable
var bP:P // " " " P " "
bC = aC.copy() // OK copy()->C is used
bP = aC.copy() // Ambiguous.
// compiler could use either functions
bP = (aC as P).copy() // but this resolves the ambiguity.
bC = aP.copy() // Fails, obvious type incompatibility
bP = aP.copy() // OK copy()->P is used
In conclusion, this would work in situations where you're either, not using the base class's copy() function or you always have explicit type context.
I found that using the same function name as the concrete class made for unwieldy code everywhere, so I ended up using a different name for the protocol's copy() function.
The end result is more like:
protocol P
{
func copyAsP() -> P
}
class C:P
{
func copy() -> C
{
// there usually is a lot more code around here...
return C()
}
func copyAsP() -> P { return copy() }
}
Of course my context and functions are completely different but in spirit of the question, I tried to stay as close to the example given as possible.
Just throwing my hat into the ring here. We needed a protocol that returned an optional of the type the protocol was applied on. We also wanted the override to explicitly return the type, not just Self.
The trick is rather than using 'Self' as the return type, you instead define an associated type which you set equal to Self, then use that associated type.
Here's the old way, using Self...
protocol Mappable{
static func map() -> Self?
}
// Generated from Fix-it
extension SomeSpecificClass : Mappable{
static func map() -> Self? {
...
}
}
Here's the new way using the associated type. Note the return type is explicit now, not 'Self'.
protocol Mappable{
associatedtype ExplicitSelf = Self
static func map() -> ExplicitSelf?
}
// Generated from Fix-it
extension SomeSpecificClass : Mappable{
static func map() -> SomeSpecificClass? {
...
}
}
To add to the answers with the associatedtype way, I suggest to move the creating of the instance to a default implementation of the protocol extension. In that way the conforming classes won't have to implement it, thus sparing us from code duplication:
protocol Initializable {
init()
}
protocol Creatable: Initializable {
associatedtype Object: Initializable = Self
static func newInstance() -> Object
}
extension Creatable {
static func newInstance() -> Object {
return Object()
}
}
class MyClass: Creatable {
required init() {}
}
class MyOtherClass: Creatable {
required init() {}
}
// Any class (struct, etc.) conforming to Creatable
// can create new instances without having to implement newInstance()
let instance1 = MyClass.newInstance()
let instance2 = MyOtherClass.newInstance()
I'm having trouble figuring out a way to return an array of instances of a specific dynamic class type, at runtime, in Swift.
I successfully compiled and tested this version which returns a single instance of a class:
class Generic {
class func all() -> Self {
return self.init()
}
required init() {
}
}
class A: Generic {
}
let a = A.all() // is of type A
The challenge here is to get compilation to allow the all function to be prototyped as follows: class func all() -> [Self] (i.e return an array of instances, working with subclasses, without any cast).
class Generic {
class func all() -> [Self] {
return [self.init()]
}
required init() {
}
}
class A: Generic {
}
let a = A.all() // won't compile
I could return an array of Generic instances with class func all() -> [Generic] but this requires an additional cast with as! to get the correct type A. I'd like to take advantage of begin in the context of class A and using the Self keyword, to let the compiler infer the 'real' type. Do you guys think it's possible?
It seems to be only possible to return single instances, not arrays.
EDIT: Got this to work using AnyObject. Better, but not optimal as it requires a cast to the correct type.
class Generic {
class func all() -> [AnyObject] {
return [self.init()]
}
required init() {
}
}
class A: Generic {
}
let a = A.all() as! [A]
Thanks!
PS: Any other way to do this using generics or protocols/protocol extensions is also an option. If you have a more "Swifty" version in mind, please be my guest. Can't help myself thinking there's maybe a better way to do this, but can't figure out how.
The only option I can see of doing something like that is using protocols instead of a base class, like this:
protocol Generic {
func all() -> [Self]
init()
}
extension Generic {
func all() -> [Self] {
return [self.dynamicType.init()]
}
}
final class A : Generic {
}
A().all()
You have two limitations doing it like this. First, all classes that conform to your protocol have to be final. Second, all classes must obviously implement the init defined in the protocol, otherwise we wouldn't be able to have the all method defined.
Edit: you don't actually need to define the init as long as you don't define any other initializers
Edit 2: I didn't notice you used class functions, you can modify my example to use class functions instead of instance methods by replacing func all() -> [Self] with static func all() -> [Self] and
func all() -> [Self] {
return [self.dynamicType.init()]
}
with
static func all() -> [Self] {
return [self.init()]
}
Unfortunately, there doesn't seem to be a way to do this using Self. Self cannot be used in expressions, so [Self] or Array<Self> are not allowed.
However, I think that your use case is completely valid and you should repot it as a bug.
It doesn't seem like I can cast a generic type to another? Swift is throwing DynamicCastClassException.
Basically here is the problem:
// T is defined as T: NSObject
let oebj1 = NetworkResponse<User>()
let oebj2 = oebj1 as NetworkResponse<NSObject>
Here is why I need to do this casting
class BaseViewController: UIViewController {
// Not allowed to make a generic viewController and therefore have to cast the generic down to NSObject
func fetchData(completion: (NetworkResponse<NSObject>)->()) {
fatalError("You have to implement fetchData method")
}
}
class UsersViewController: BaseViewController {
override func fetchData(completion: (NetworkResponse<NSObject>)->()) {
userNetworkManager.fetchUsers { networkUSerResponse in
completion(networkUSerResponse as NetworkResponse<NSObject>)
}
}
}
class UserNetworkManager {
func fetchUsers(completion: (NetworkResponse<User>)->()) {
// Do stuff
}
}
In general, there doesn't seem to be a way to do this. The basic problem is that NetworkResponse<NSObject> and NetworkResponse<User> are essentially completely unrelated types that happen to have identical functionality and similar naming.
In this specific case, it really isn't necessary since you're throwing away the known Userness of the result anyway, meaning that if you really want to treat it as a User later you'll have to do a conditional cast back. Just remove the generic from NetworkResponse and it will all work as expected. The major drawback is that within UserVC.fetchData you won't have access to the returned User result without a (conditional) cast.
The alternative solution would be to separate out whatever additional information is in NetworkResponse from the payload type (User/NSObject) using a wrapper of some sort (assuming there's significant sideband data there). That way you could pass the NetworkResponse to super without mutilation and down-cast the payload object as needed.
Something like this:
class User : NSObject {
}
class Transaction {
let request:NSURLRequest?
let response:NSURLResponse?
let data:NSData?
}
class Response<T:NSObject> {
let transaction:Transaction
let payload:T
init(transaction:Transaction, payload:T) {
self.transaction = transaction
self.payload = payload
}
}
class UserNetworkManager {
func fetchUsers(completion: (Response<User>) -> ()) {
completion(Response(transaction:Transaction(), payload:User()))
}
}
let userNetworkManager = UserNetworkManager();
class BaseVC {
func fetchData(completion: (Response<NSObject>) -> ()) {
fatalError("Gotta implement fetchData")
}
}
class UserVC : BaseVC {
override func fetchData(completion: (Response<NSObject>) -> ()) {
userNetworkManager.fetchUsers { response -> () in
completion(Response(transaction: response.transaction, payload: response.payload))
}
}
}
Although at that point, you're probably better off just separating the transaction information and payload information into separate arguments to the callback.