cross coverage of transition in functional coverage of system verilog - code-coverage

Is this possible to do cross coverage of transition?
Something like :
//A to B is one bin.
//B to C other bin.
I want to do cross of this, that is: A to B to B to C
In other words, I have 3 values A,B,C, and I want to check all combinations of transition between A,B,C.

You don't need cross-coverage to do what you want. Simple transition coverage should be sufficient. You just have to say that you're interested in 2 transitions.
Let's say you have an enum type defined like this:
typedef enum { A, B, C } some_type_t;
You can define double transition for a field of this type as follows:
class some_class;
some_type_t field;
covergroup cg;
coverpoint field {
bins trans[] = (A,B,C=>A,B,C=>A,B,C);
}
endgroup // cg
function new();
cg = new();
endfunction
endclass // some_class
This will define a bin for each transition.

Related

Dot Product vs Element-Wise multiplication for Backpropogation

I am trying to backpropogate a very primitive / simple ANN.
I've almost got it working. I'm trying to implement the formulas and the article I'm reading does not specify whether to use dot product or element wise multiplication or some other multiplication.
Article: https://ml-cheatsheet.readthedocs.io/en/latest/backpropagation.html
Here's the formula for calculating the error (or delta) of a single Hidden layer:
Or, as I read it in the context of my algorithm,
Delta = prev_delta * prev_weight * zprime
Where delta is the error of this layer, prev_delta is the delta of the previous layer, prev_weight is the weight of the previous layer, and zprime is the derivative of the activation function of the current layer.
Also, for a single Output Layer:
Or, as I read it in the context of my algorithm,
Delta = (output - target) % zprime;
Where output is the final output of the feed-forward and target is the target values.
I've written this code to run this calculation:
void Layer::backward(Matrix & prev_delta, Matrix & prev_weight) {
// all variables are matrices
// except for prev_layer, that's a pointer to a layer object.
// I'm using Armadillo for linear algebra / matrices
// delta, weight, output, and zprime refer to the current layer.
// prev_delta, prev_weight belong the the previous layer.
if (next_layer == nullptr) {
// if next layer is null, this is the output layer.
// in that case, prev_delta is target.
// yHat - y * R'(Zo)
delta = (output - prev_delta) * zprime;
}
else {
// Eo * Wo * R'(Zh)
delta = prev_delta * prev_weight * zprime;
}
// tell the next layer to backpropogate
if (prev_layer != nullptr)
prev_layer -> backward(delta, weight);
}
matrix * matrix indicates a matrix multiplication (dot product)
matrix % matrix indicates element-wise multiplication
The issue I'm having is that these matrices don't seem to multiply properly. I've made sure everything lines up the same way the article has it, but these pieces just don't seem to fit. How should these matrices be multiplied to get the result?
Edit: to clarify, I get errors when I try to take the dot product of these matrices. "invalid size". I've tried using element wise multiplication but then things get weird there too.

16 bit logic/computer simulation in Swift

I’m trying to make a basic simulation of a 16 bit computer with Swift. The computer will feature
An ALU
2 registers
That’s all. I have enough knowledge to create these parts visually and understand how they work, but it has become increasingly difficult to make larger components with more inputs while using my current approach.
My current approach has been to wrap each component in a struct. This worked early on, but is becoming increasingly difficult to manage multiple inputs while staying true to the principles of computer science.
The primary issue is that the components aren’t updating with the clock signal. I have the output of the component updating when get is called on the output variable, c. This, however, neglects the idea of a clock signal and will likely cause further problems later on.
It’s also difficult to make getters and setters for each variable without getting errors about mutability. Although I have worked through these errors, they are annoying and slow down the development process.
The last big issue is updating the output. The output doesn’t update when the inputs change; it updates when told to do so. This isn’t accurate to the qualities of real computers and is a fundamental error.
This is an example. It is the ALU I mentioned earlier. It takes two 16 bit inputs and outputs 16 bits. It has two unary ALUs, which can make a 16 bit number zero, negate it, or both. Lastly, it either adds or does a bit wise and comparison based on the f flag and inverts the output if the no flag is selected.
struct ALU {
//Operations are done in the order listed. For example, if zx and nx are 1, it first makes input 1 zero and then inverts it.
var x : [Int] //Input 1
var y : [Int] //Input 2
var zx : Int //Make input 1 zero
var zy : Int //Make input 2 zero
var nx : Int //Invert input 1
var ny : Int //Invert input 2
var f : Int //If 0, do a bitwise AND operation. If 1, add the inputs
var no : Int //Invert the output
public var c : [Int] { //Output
get {
//Numbers first go through unary ALUs. These can negate the input (and output the value), return 0, or return the inverse of 0. They then undergo the operation specified by f, either addition or a bitwise and operation, and are negated if n is 1.
var ux = UnaryALU(z: zx, n: nx, x: x).c //Unary ALU. See comments for more
var uy = UnaryALU(z: zy, n: ny, x: y).c
var fd = select16(s: f, d1: Add16(a: ux, b: uy).c, d0: and16(a: ux, b: uy).c).c //Adds a 16 bit number or does a bitwise and operation. For more on select16, see the line below.
var out = select16(s: no, d1: not16(a: fd).c, d0: fd).c //Selects a number. If s is 1, it returns d1. If s is 0, it returns d0. d0 is the value returned by fd, while d1 is the inverse.
return out
}
}
public init(x:[Int],y:[Int],zx:Int,zy:Int,nx:Int,ny:Int,f:Int,no:Int) {
self.x = x
self.y = y
self.zx = zx
self.zy = zy
self.nx = nx
self.ny = ny
self.f = f
self.no = no
}
}
I use c for the output variable, store values with multiple bits in Int arrays, and store single bits in Int values.
I’m doing this on Swift Playgrounds 3.0 with Swift 5.0 on a 6th generation iPad. I’m storing each component or set of components in a separate file in a module, which is why some variables and all structs are marked public. I would greatly appreciate any help. Thanks in advance.
So, I’ve completely redone my approach and have found a way to bypass the issues I was facing. What I’ve done is make what I call “tracker variables” for each input. When get is called for each variable, it returns that value of the tracker assigned to it. When set is called it calls an update() function that updates the output of the circuit. It also updates the value of the tracker. This essentially creates a ‘copy’ of each variable. I did this to prevent any infinite loops.
Trackers are unfortunately necessary here. I’ll demonstrate why
var variable : Type {
get {
return variable //Calls the getter again, resulting in an infinite loop
}
set {
//Do something
}
}
In order to make a setter, Swift requires a getter to be made as well. In this example, calling variable simply calls get again, resulting in a never-ending cascade of calls to get. Tracker variables are a workaround that use minimal extra code.
Using an update method makes sure the output responds to a change in any input. This also works with a clock signal, due to the architecture of the components themselves. Although it appears to act as the clock, it does not.
For example, in data flip-flops, the clock signal is passed into gates. All a clock signal does is deactivate a component when the signal is off. So, I can implement that within update() while remaining faithful to reality.
Here’s an example of a half adder. Note that the tracker variables I mentioned are marked by an underscore in front of their name. It has two inputs, x and y, which are 1 bit each. It also has two outputs, high and low, also known as carry and sum. The outputs are also one bit.
struct halfAdder {
private var _x : Bool //Tracker for x
public var x: Bool { //Input 1
get {
return _x //Return the tracker’s value
}
set {
_x = x //Set the tracker to x
update() //Update the output
}
}
private var _y : Bool //Tracker for y
public var y: Bool { //Input 2
get {
return _y
}
set {
_y = y
update()
}
}
public var high : Bool //High output, or ‘carry’
public var low : Bool //Low output, or ‘sum’
internal mutating func update(){ //Updates the output
high = x && y //AND gate, sets the high output
low = (x || y) && !(x && y) //XOR gate, sets the low output
}
public init(x:Bool, y:Bool){ //Initializer
self.high = false //This will change when the variables are set, ensuring a correct output.
self.low = false //See above
self._x = x //Setting trackers and variables
self._y = y
self.x = x
self.y = y
}
}
This is a very clean way, save for the trackers, do accomplish this task. It can trivially be expanded to fit any number of bits by using arrays of Bool instead of a single value. It respects the clock signal, updates the output when the inputs change, and is very similar to real computers.

iOS slow image pixel iterating

I am trying to implement RGB histogram computation for images in Swift (I am new to iOS).
However the computation time for 1500x1000 image is about 66 sec, which I consider to be too slow.
Are there any ways to speed up image traversal?
P.S. current code is the following:
func calcHistogram(image: UIImage) {
let bins: Int = 20;
let width = Int(image.size.width);
let height = Int(image.size.height);
let binStep: Double = Double(bins-1)/255.0
var hist = Array(count:bins, repeatedValue:Array(count:bins, repeatedValue:Array(count:bins, repeatedValue:Int())))
for i in 0..<bins {
for j in 0..<bins {
for k in 0..<bins {
hist[i][j][k] = 0;
}
}
}
var pixelData = CGDataProviderCopyData(CGImageGetDataProvider(image.CGImage))
var data: UnsafePointer<UInt8> = CFDataGetBytePtr(pixelData)
for x in 0..<width {
for y in 0..<height {
var pixelInfo: Int = ((width * y) + x) * 4
var r = Double(data[pixelInfo])
var g = Double(data[pixelInfo+1])
var b = Double(data[pixelInfo+2])
let r_bin: Int = Int(floor(r*binStep));
let g_bin: Int = Int(floor(g*binStep));
let b_bin: Int = Int(floor(b*binStep));
hist[r_bin][g_bin][b_bin] += 1;
}
}
}
As noted in my comment on the question, there are some things you might rethink before you even try to optimize this code.
But even if you do move to a better overall solution like GPU-based histogramming, a library, or both... There are some Swift pitfalls you're falling into here that are good to talk about so you don't run into them elsewhere.
First, this code:
var hist = Array(count:bins, repeatedValue:Array(count:bins, repeatedValue:Array(count:bins, repeatedValue:Int())))
for i in 0..<bins {
for j in 0..<bins {
for k in 0..<bins {
hist[i][j][k] = 0;
}
}
}
... is initializing every member of your 3D array twice, with the same result. Int() produces a value of zero, so you could leave out the triple for loop. (And possibly change Int() to 0 in your innermost repeatedValue: parameter to make it more readable.)
Second, arrays in Swift are copy-on-write, but this optimization can break down in multidimensional arrays: changing an element of a nested array can cause the entire nested array to be rewritten instead of just the one element. Multiply that by the depth of nested arrays and number of element writes you have going on in a double for loop and... it's not pretty.
Unless there's a reason your bins need to be organized this way, I'd recommend finding a different data structure for them. Three separate arrays? One Int array where index i is red, i + 1 is green, and i + 2 is blue? One array of a custom struct you define that has separate r, g, and b members? See what conceptually fits with your tastes or the rest of your app, and profile to make sure it works well.
Finally, some Swift style points:
pixelInfo, r, g, and b in your second loop don't change. Use let, not var, and the optimizer will thank you.
Declaring and initializing something like let foo: Int = Int(whatever) is redundant. Some people like having all their variables/constants explicitly typed, but it does make your code a tad less readable and harder to refactor.
Int(floor(x)) is redundant — conversion to integer always takes the floor.
If you have some issues about performance in your code, first of all, use Time Profiler from Instruments. You can start it via Xcode menu Build->Profile, then, Instruments app opened, where you can choose Time Profiler.
Start recording and do all interactions in the your app.
Stop recording and analyse where is the "tightest" place of your code.
Also check options "Invert call tree", "Hide missing symbols" and "Hide system libraries" for better viewing profile results.
You can also double click at any listed function to view it in code and seeing percents of usage

L-BFGS from RISO not working

I am testing the implementation of RISO's L-BFGS library for function minimization for logistic regression in Java. Here is the link to the class that I am using.
To test the library, I am trying to minimize the function:
f(x) = 2*(x1^2) + 4*x2 + 5
The library needs the objective and the gradient functions which I implemented as below:
/**
The value of the objective function, given variable assignments
x. This is specific to your problem, so you must override it.
Remember that LBFGS only minimizes, so lower is better.
**/
public double objectiveFunction(double[] x) throws Exception {
return (2*x[0]*x[0] + 3*x[1] + 1);
}
/**
The gradient of the objective function, given variable assignments
x. This is specific to your problem, so you must override it.
**/
public double[] evaluateGradient(double[] x) throws Exception {
double[] result = new double[x.length];
result[0] = 4 * x[0];
result[1] = 3;
return result;
}
Running the code with this implementation of the objective function and gradient gives me the following exception:
Exception in thread "main" Line search failed. See documentation of routine mcsrch.
Error return of line search: info = 3 Possible causes:
function or gradient are incorrect, or incorrect tolerances. (iflag == -1)
I haven't changed the tolerances from the default values. What am I doing wrong?
I don't think your cost function has a minimum since x2 can reach -Inf, and gradient algorithm won't find it.
It is a quadratic function for x1, but not for x2. I suspect the exception is thrown out because the gradient algorithm cannot find out the optimal solution, and it 'thinks' the problem is the tolerance coefficient is not correctly set, or the gradient function is wrong
Do you mean f(x) = 2*(x^2) + 3*x + 1 in your object function?

How to add Tuples and apply a ceiling/clamp function in F#

So I am working on a project using F# for some SVG line manipulations.
I thought it would be good to represent color an RGB value as a tuple (R,G,B). It just made sense to me. Well since my project involves generating SVG lines in a loop. I decided to have a color offset, conveniently also represented in a tuple (Roffset, Goffset, Boffset)
An offset in this case represents how much each line differs from the previous.
I got to a point where I needed to add the tuples. I thought since they were of the same dimensions and types, it would be fine. But apparently not. I also checked the MSDN on tuples, but I did not find anything about how to add them or combine them.
Here is what I tried. Bear in mind I tried to omit as much irrelevant code as possible since this is a long class definition with LOTS of members.
type lineSet ( 10+ params omitted ,count, colorOff :byte*byte*byte, color :byte*byte*byte ,strokeWid , strokeWidthOff ) =
member val Color = color with get, set
member val ColorOffset = colorOff with get, set
member val lineCount = count with get, set
interface DrawingInterfaces.IRepresentable_SVG with
member __.getSVGRepresenation() =
let mutable currentColor = __.Color
for i in 1..__.lineCount do
currentColor <- currentColor + __.ColorOffset
That last line of code is what I wanted to do. However, it appears you cannot add tuples directly.
I also need a way to clamp the result so it cannot go over 255, but I suspect a simple try with block will do the trick. OR I could let the params take a type int*int*int and just use an if to reset it back to 255 each time.
As I mentioned in the comments, the clamping function in your code does not actually work - you need to convert the numbers to integers before doing the addition (and then you can check if the integer is greater than 255). You can do something like this:
let addClamp (a:byte) (b:byte) =
let r = int a + int b
if r > 255 then 255uy else byte r
Also, if you work with colors, then it might make sense to define a custom color type rather than passing colors around as tuples. That way, you can also define + on colors (with clamping) and it will make your code simpler (but still, 10 constructor arguments is a bit scary, so I'd try to think if there is a way to simplify that a bit). A color type might look like this:
type Color(r:byte, g:byte, b:byte) =
static let addClamp (a:byte) (b:byte) =
let r = int a + int b
if r > 255 then 255uy else byte r
member x.R = r
member x.B = b
member x.G = g
static member (+) (c1:Color, c2:Color) =
Color(addClamp c1.R c2.R, addClamp c1.G c2.G,addClamp c1.B c2.B)
Using the type, you can then add colors pretty easily and do not have to add clamping each time you need to do that. For example:
Color(255uy, 0uy, 0uy) + Color(1uy, 0uy, 0uy)
But I still think you could make the code more readable and more composable by refactoring some of the visual properties (like stroke & color) to a separate type and then just pass that to LineSet. This way you won't have 10+ parameters to a constructor and your code will probably be more flexible too.
Here is a modified version of your code which I think is a bit nicer
let add3DbyteTuples (tuple1:byte*byte*byte , tuple2:byte*byte*byte) =
let inline intify (a,b,c) = int a,int b,int c
let inline tripleadd (a,b,c) (d,e,f) = a+d,b+e,c+f
let clamp a = if a > 255 then 255 else a
let R,G,B = tripleadd (intify tuple1) (intify tuple2)
clamp R,clamp G,clamp B

Resources