Low cardinality Dimensions in Datawarehouse - data-warehouse

I've a bunch of columns in my fact tables that have a very low cardinality (~8). Each of these columns store keys that refer to a master table. I'm wondering whether to import each of these individual master tables as dimension or do I store the values directly in the fact table. Master tables have no additional attributes except the value I'm trying to store. What are the pros and cons of each approach ?

This seems to be a classic example of a junk dimension that combines together a number of miscellaneous, low-cardinality flags and indicators (instead of putting each of them in a separate dimension table).
Disadvantages of other approaches:
Putting every low cardinality attribute in a separate, dedicated dimension could result in an overly complex model with excessive number of dimension tables (centipede fact tables).
Storing the attributes directly in the fact table is allowed but reserved only for degenerate dimensions, i.e. values like order or invoice numbers, retail point-of-sale transaction numbers - high-cardinality values that don't have any additional attributes describing them.
Low-cardinality flags are not DDs, because even though they may consist of a sole key now, they may easily have additional attributes in the future, e.g. multiple descriptive captions for reports - short for mobile users and long for desktop users.
Details: Design Tip #113 Creating, Using, and Maintaining Junk Dimensions

Related

Does a data warehouse need to satisfy 2NF or another normal form?

I'm investigating data warehouses. And I have an issue about star schemas.
It's in
Oracle® OLAP Application Developer's Guide
10g Release 1 (10.1)
3.2.1 Dimension Table: TIME_DIM
https://docs.oracle.com/cd/B13789_01/olap.101/b10333/global.htm#CHDCGABE
To represent the hierarchy MONTH -> QUARTER -> YEAR, we need some keys such as: YEAR_ID, QUARTER_ID. But there are some things that I do not understand:
1) Why do we need field YEAR_DSC & QUARTER_DSC? I think that we can look up these values from YEAR & QUARTER TABLE. And it breaks 2NF.
2) What is the normal form that a schema in data warehouse needs to satisfy? (1NF, 2NF, 3NF, or any.)
NFs (normal forms) don't matter for data warehouse base tables.
We normalize to reduce certain kinds of redundancy so that when we update a database we don't have to say the same thing in multiple places and so that we can't accidentally erroneously not say the same thing where it would need to be said in multiple places. That is not a problem in query results because we are not updating them. The same is true for a data warehouse's base tables. (Which are also just queries on its original database's base tables.)
Data warehouses are usually optimized for reading speed, and that usually means some denormalization compared to the original database to avoid recomputation at the expense of space. (Notice though that sometimes rereading something bigger can be slower than reading smaller parts and recomputing the big thing.) We probably don't want to drop normalized tables when moving to a data warehouse, because they answer simple queries and we don't want to slow down by recomputing them. Other than those tradeoffs, there's no reason not to denormalize. Some particular warehouse design methods might have their own rules about what parts should be denormalized what amounts.
(Whatever our original database design NF is chosen to be, we should always first normalize to 5NF then consciously denormalize. We don't need to normalize or know constraints to update or query a database.)
Read some textbook basics on why we normalize & why we use data warehouses.

Data Warehousing - Star Schema vs Flat Table

I'm trying to design a Data Warehouse for a single store of commonly required data ranging from finance systems, project scheduling systems and a myriad of scientific systems. I.e. many different data marts.
I have been reading up on Data Warehousing and popular methods such as Star Schemas and Kimball methods etc but one question I cannot find answer to is:
Why is it better to design your DW Data Mart as a star schema rather than a single flat table?
Surely having no joins between facts and attributes/dimensions is faster and simpler than having lots of small joins to all the dimension tables? Disk space is not a problem, we'll just throw more disks at the database if necessary. Is the star schema slightly outdated these days or is it still data architect dogma?
Your question is very good: the Kimball mantra for dimensional modelling is to improve performance and to improve usability.
But I don't think it is outdated, or dogma- it is a reasonable, practical approach for many situations and platforms.
The way relational DBs store data means there's a balancing act to be struck between the numbers and types of tables, the routes in to the data for typical queries, easy maintainability and description of relationships between data, the numbers of joins, the way the joins are constructed, the indexability of columns, etc.
3NF (or further) is one end of the spectrum, suiting OLTP systems, and a single table is the other end of the spectrum. Dimensional models are in the middle and appropriate for reporting, at least when using certain technologies.
Performance isn't all about 'number of joins', although a star schema performs better for reporting workloads than a fully normalised database, in part because of a reduce number of joins. Dimensions are typically very wide. If you are including all those dimension fields in every row of every fact, you have very large rows indeed, and finding your way into those rows will perform very badly for typical queries.
Facts are numerous, so if you can make those tables compact, with the 'wordier' dimensions filterable, you hit a sweet spot of performance that a single table isn't going to match, unless heavily indexed.
And yes a single table for a fact is simpler in terms of numbers of tables but is it really easier to navigate? Dimensions and facts are easy concepts to understand, and what if you want to cross you queries across facts? You've got many different data marts but one of the benefits of having a data warehouse in the first place is that these aren't distinct- they're related and can be reported across. Conformed dimensions enable this.
If you combine your fact and dimensions into a single table, you'll either lose the visibility into dimension attributes that have never been used, or your measures will be thrown off by inclusion of a dummy event for the unused dimension attribute.
For example, a restaurant menu is a dimension and the purchased food is a fact. If you combined these into one table, how would you identify which food has never been ordered? For that matter, prior to your first order, how would you identify what food was available on the menu?
The dimension represents the possibilities, the fact represents the realization of the possibilities.
Combining facts and dimensions in the same table limits the scalability and the flexibility.
Suppose that one day the business decides to change a dimension description ( for example the product name ). Dimension tables aren't as deep as the fact tables and the update process or SCD management should be easier and less resource intensive.

EDW Fact Table for Parent Child

I am building an EDW based on Kimballs approach. I have a parent/child relationship in our source system (Order/Line Items). The fact table I have is defined at the line item grain. Business would like to be able to slice and dice this data by additional order level attributes (ie. Shipmethod, order type, etc.). I'm planning on creating a Order Dimension instead of adding these attributes directly to the fact table. I don't want add these to the fact table directly cause adding all the possible attributes will make this fact table very wide.
So the question is... is it ok design to have a Order Dimension that has attributes to describe the Order? This dimension would not have any measures as all the measures will still be in the fact table. This is just additional data that describes the fact.
Thanks!
The challenge with the above link Kimbalgroup design tip 95 is that there may be attributes that belong at header level fact. For example, order total amount is higher level of measure compared to order line table's grain. Measure attributes at the header level should not be combined with measure attributes at the line level.
A possible solution is to create multiple fact tables. The 1st header fact table shall include all measures at the header while the line table shall include measures or transactions at the line level. So all attributes are at the correct grain, and we can bring the header's natural key(s) to the line table (similar to the degenerate dimension). We do have to bring to include all the header dimensions to avoid having to join the two large fact tables.
This way, there is no direct foreign key between the parent to child fact able, and the grain of the attributes are preserved correctly at each level.
This is a very common dimensional modelling dillemma.
You're right that you shouldn't add these directly to the order line-level fact table. They are dimensional attributes in that they'll be used to filter down the fact table when querying. However, if you plonk them all in an Order dimension you'd likely end up with a very large dimension, especially if you had an Order # to include, and any analysis of things like order type or ship method would have to go via it. If you were modelling an order level fact, order type/ship method would be held in dimensions, possibly within an order details dimension created as a 'junk' dimension (but that's another question).
The Kimball Group's recommended approach is to have the order line level fact 'inherit' the dimensions you would have otherwise used in the order level fact, so they're available for analysis directly, rather than having an 'order' dimension. Note, the order # can be a 'degenerate dimension' in the fact table in this instance, as all the interesting information about the order has been captured in other dimensions.
The Kimball Group have a useful article about this here:
http://www.kimballgroup.com/2007/10/design-tip-95-patterns-to-avoid-when-modeling-headerline-item-transactions/
in which the order dimension idea's flaws are highlighted and the recommended approach described.

Dimension with two surrogate keys or two seperate dimensions?

im looking for some guidance for dimensional modeling.
I'm looking at some search data that is stored in a database in a star schema. There is one dimension for queries and one dimension for landing pages. Both dimensions have a surrogate key that are stored in the fact table as foreign keys.
The fact table has about 100 million rows and the dimensions each have about 100k rows.
As the joins of these tables are taking very long lately i'm wondering if it would be a good idea to combine the two dimensions into one so it only joins to one table. The two dimensions are M:N so the new dimension would be very huge.
Thanks!!
There isn't a "right" answer for your question without knowing more about your data (like do you have more dimensions in your fact table? how many combinations of Queries and Landing pages do you have?), but few comments:
You current design (for what I can understand from here) is not bad, you have a lot of data, you have to deal with it, but combine two dimensions with 100K elements to avoid a join doesn't seems right to me
Try to optimize your queries, build indexes if you don't have them, parallelize your queries (if your db engine allows you to do so), try to avoid like in your where if possible, last resource think about more hardware or a different database engine.
If you usually query using only one of these dimensions maybe you can think about aggregated tables to reduce the number of rows, you will use more space but your query will have a single join and a smaller fact table
Can query be child of landing page? (i.e. stackoverflow.com is parent of queries like "Guru Meditation error message" and "stackcareers.com" is parent of "pool boy for datalake jobs") Of course you will end with the same query for multiple landing pages, you will need to assign different foreign keys in that case. But this different model can lead to a different solution, you will have only 1:M relationships and can build an aggregated table by landing page dimension, but this will require to change your queries to extract data. And again I don't know your data, maybe it will make more sense Queries parent of Landing Pages...
Again this are just my "thoughts" no solutions.

Fact table design guidance for 100s of facts

I'm trying to create a datamart for the healthcare application. The facts in the datamart are basically going to be measurements and findings related to heart, and we have 100s of them. Starting from 1000 and can go to as big as 20000 per exam type.
I'm wondering what my design choices for the fact tables are:
Grain: 1 row per patient per exam type.
Some of the choices that I can think of -
1) A big wide fact table with 1000 or more columns.
2) EAV based design - A separate Measure dimension table. This foreign key will go into the fact table and the measure value will be in fact table. So the grain of the fact table will be changed to 1 row per patient per exam type per measurement.
3) Create smaller multiple fact tables per exam type per some other criteria like subgroup. But the end user is going to query across subgroups for that exam type and fact-fact join is not recommended.
4) any other ideas?
Any inputs would be appreciated.
1. A big wide fact table with 1000 or more columns.
One very wide fact table gives end-user maximum flexibility if queries are executed directly in the data warehouse. However some considerations should be taken into account, as you might hit some limits depending on a platform.
SQL Server 2014 limits are as per below:
Bytes per row 8,060. A row-overflow storage might be a solution, however it supports only few column types typically not related to fact nature, i.e. varchar, nvarchar, varbinary, sql_variant. Also not supported in In-Memory OLTP. https://technet.microsoft.com/en-us/library/ms186981(v=sql.105).aspx
Columns per non-wide table 1024. Wide-tables and sparse columns are solution as columns per wide table limit is 30,000. However the same Bytes per row limit applies. https://technet.microsoft.com/en-us/library/cc280604(v=sql.120).aspx
Columns per SELECT/INSERT/UPDATE statement 4,096
Non-clustered indexes per table 999
https://technet.microsoft.com/en-us/library/ms143432(v=sql.120).aspx
2. EAV based design - A separate Measure dimension table. This foreign key will go into the fact table and the measure value will be in fact table. So the grain of the fact table will be changed to 1 row per patient per exam type per measurement.
According to Kimball, EAV design is called Fact Normalization. It may make sense when a number of measurements is extremely lengthy, but sparsely populated for a given fact and no computations are made between facts.
Because facts are normalized therefore:
Extensibility is very easy, i.e. it's easy to add new measurements without the need to amend the data structure.
It's good to extract all measurements for one exam and present measurements as rows on the screen.
It's hard to extract/aggregate/make computation between several measurements (e.g. average HDL to CHOL ration) and present measurements/aggregates/computations as columns, i.e. requires complex WHERE/PIVOTING or multi-joins. SQL makes it difficult to make computations between facts in different rows.
If primary end-user platform is an OLAP cube then Fact Normalization makes sense. The cubes allows to make computation across any dimension.
Data importing could be an issue if data format is in a flat style CSV.
This questions is also discussed here Should I use EAV model?.
3) Create smaller multiple fact tables per exam type per some other criteria like subgroup. But the end user is going to query across subgroups for that exam type and fact-fact join is not recommended.
In some scenarios multiple smaller fact tables perfectly makes sense. One of the reason is if you hit some physical limits set by platform, e.g. Bytes per row.
The facts could be grouped either by subject area, e.g. measurement group/subgroup, or by frequency of usage. Each table could be placed on a separate file group and drive to maximize I/O.
Further, you could duplicate measurements across different fact tables to reduce the need of fact tables join, i.e. put one measurement in a specific measurement subgroup fact table and in frequently used measurement fact table.
However some considerations should be taken into account if there are some specific requirements for data loading. For example, if a record errors out in your ETL to one fact table, you might want to make sure that the corresponding records in the other fact tables are deleted and staged to your error table so you don't end up with any bogus information. This is especially true if end users have their own calculations in the front end tool.
If you use OLAP cubes then multiple fact tables actually becomes a source of a measure group to a specific fact table.
In terms of fact-to-fact join, you (BI application) should never issue SQL that joins two fact tables together across the fact table’s foreign keys. Instead, the technique of Drilling Across two fact tables should be used, where the answer sets from two or more fact tables are separately created, and the results sort-merged on the common row header attribute values to produce the correct result.
More on this topic: http://www.kimballgroup.com/2003/04/the-soul-of-the-data-warehouse-part-two-drilling-across/
4) any other ideas?
SQL XML or some kind NoSQL could be an option, but the same querying / aggregation / computation / presentation issues exist.

Resources