SSE intrinsics includes _mm_shuffle_ps xmm1 xmm2 immx which allows one to pick 2 elements from xmm1 concatenated with 2 elements from xmm2. However this is for floats, (implied by the _ps , packed single). However if you cast your packed integers __m128i, then you can use _mm_shuffle_ps as well:
#include <iostream>
#include <immintrin.h>
#include <sstream>
using namespace std;
template <typename T>
std::string __m128i_toString(const __m128i var) {
std::stringstream sstr;
const T* values = (const T*) &var;
if (sizeof(T) == 1) {
for (unsigned int i = 0; i < sizeof(__m128i); i++) {
sstr << (int) values[i] << " ";
}
} else {
for (unsigned int i = 0; i < sizeof(__m128i) / sizeof(T); i++) {
sstr << values[i] << " ";
}
}
return sstr.str();
}
int main(){
cout << "Starting SSE test" << endl;
cout << "integer shuffle" << endl;
int A[] = {1, -2147483648, 3, 5};
int B[] = {4, 6, 7, 8};
__m128i pC;
__m128i* pA = (__m128i*) A;
__m128i* pB = (__m128i*) B;
*pA = (__m128i)_mm_shuffle_ps((__m128)*pA, (__m128)*pB, _MM_SHUFFLE(3, 2, 1 ,0));
pC = _mm_add_epi32(*pA,*pB);
cout << "A[0] = " << A[0] << endl;
cout << "A[1] = " << A[1] << endl;
cout << "A[2] = " << A[2] << endl;
cout << "A[3] = " << A[3] << endl;
cout << "B[0] = " << B[0] << endl;
cout << "B[1] = " << B[1] << endl;
cout << "B[2] = " << B[2] << endl;
cout << "B[3] = " << B[3] << endl;
cout << "pA = " << __m128i_toString<int>(*pA) << endl;
cout << "pC = " << __m128i_toString<int>(pC) << endl;
}
Snippet of relevant corresponding assembly (mac osx, macports gcc 4.8, -march=native on an ivybridge CPU):
vshufps $228, 16(%rsp), %xmm1, %xmm0
vpaddd 16(%rsp), %xmm0, %xmm2
vmovdqa %xmm0, 32(%rsp)
vmovaps %xmm0, (%rsp)
vmovdqa %xmm2, 16(%rsp)
call __ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc
....
Thus it seemingly works fine on integers, which I expected as the registers are agnostic to types, however there must be a reason why the docs say that this instruction is only for floats. Does someone know any downsides, or implications I have missed?
There is no equivalent to _mm_shuffle_ps for integers. To achieve the same effect in this case you can do
SSE2
*pA = _mm_shuffle_epi32(_mm_unpacklo_epi32(*pA, _mm_shuffle_epi32(*pB, 0xe)),0xd8);
SSE4.1
*pA = _mm_blend_epi16(*pA, *pB, 0xf0);
or change to the floating point domain like this
*pA = _mm_castps_si128(
_mm_shuffle_ps(_mm_castsi128_ps(*pA),
_mm_castsi128_ps(*pB), _MM_SHUFFLE(3, 2, 1 ,0)));
But changing domains may incur bypass latency delays on some CPUs. Keep in mind that according to Agner
The bypass delay is important in long dependency chains where latency is a bottleneck, but
not where it is throughput rather than latency that matters.
You have to test your code and see which method above is more efficient.
Fortunately, on most Intel/AMD CPUs, there is usually no penalty for using shufps between most integer-vector instructions. Agner says:
For example, I found no delay when mixing PADDD and SHUFPS [on Sandybridge].
Nehalem does have 2 bypass-delay latency to/from SHUFPS, but even then a single SHUFPS is often still faster than multiple other instructions. Extra instructions have latency, too, as well as costing throughput.
The reverse (integer shuffles between FP math instructions) is not as safe:
In Agner Fog's microarchitecture on page 112 in Example 8.3a, he shows that using PSHUFD (_mm_shuffle_epi32) instead of SHUFPS (_mm_shuffle_ps) when in the floating point domain causes a bypass delay of four clock cycles. In Example 8.3b he uses SHUFPS to remove the delay (which works in his example).
On Nehalem there are actually five domains. Nahalem seems to be the most effected (the bypass delays did not exist before Nahalem). On Sandy Bridge the delays are less significant. This is even more true on Haswell. In fact on Haswell Agner said he found no delays between SHUFPS or PSHUFD (see page 140).
Related
I'm trying to run a parallel for loop with triSYCL. This is my code:
#define TRISYCL_OPENCL
#define OMP_NUM_THREADS 8
#define BOOST_COMPUTE_USE_CPP11
//standart libraries
#include <iostream>
#include <functional>
//deps
#include "CL/sycl.hpp"
struct Color
{
float r, g, b, a;
friend std::ostream& operator<<(std::ostream& os, const Color& c)
{
os << "(" << c.r << ", " << c.g << ", " << c.b << ", " << c.a << ")";
return os;
}
};
struct Vertex
{
float x, y;
Color color;
friend std::ostream& operator<<(std::ostream& os, const Vertex& v)
{
os << "x: " << v.x << ", y: " << v.y << ", color: " << v.color;
return os;
}
};
template<typename T>
T mapNumber(T x, T a, T b, T c, T d)
{
return (x - a) / (b - a) * (d - c) + c;
}
int windowWidth = 640;
int windowHeight = 720;
int main()
{
auto exception_handler = [](cl::sycl::exception_list exceptions) {
for (std::exception_ptr const& e : exceptions)
{
try
{
std::rethrow_exception(e);
} catch (cl::sycl::exception const& e)
{
std::cout << "Caught asynchronous SYCL exception: " << e.what() << std::endl;
}
}
};
cl::sycl::default_selector defaultSelector;
cl::sycl::context context(defaultSelector, exception_handler);
cl::sycl::queue queue(context, defaultSelector, exception_handler);
auto* pixelColors = new Color[windowWidth * windowHeight];
{
cl::sycl::buffer<Color, 2> color_buffer(pixelColors, cl::sycl::range < 2 > {(unsigned long) windowWidth,
(unsigned long) windowHeight});
cl::sycl::buffer<int, 1> b_windowWidth(&windowWidth, cl::sycl::range < 1 > {1});
cl::sycl::buffer<int, 1> b_windowHeight(&windowHeight, cl::sycl::range < 1 > {1});
queue.submit([&](cl::sycl::handler& cgh) {
auto color_buffer_acc = color_buffer.get_access<cl::sycl::access::mode::write>(cgh);
auto width_buffer_acc = b_windowWidth.get_access<cl::sycl::access::mode::read>(cgh);
auto height_buffer_acc = b_windowHeight.get_access<cl::sycl::access::mode::read>(cgh);
cgh.parallel_for<class init_pixelColors>(
cl::sycl::range<2>((unsigned long) width_buffer_acc[0], (unsigned long) height_buffer_acc[0]),
[=](cl::sycl::id<2> index) {
color_buffer_acc[index[0]][index[1]] = {
mapNumber<float>(index[0], 0.f, width_buffer_acc[0], 0.f, 1.f),
mapNumber<float>(index[1], 0.f, height_buffer_acc[0], 0.f, 1.f),
0.f,
1.f};
});
});
std::cout << "cl::sycl::queue check - selected device: "
<< queue.get_device().get_info<cl::sycl::info::device::name>() << std::endl;
}//here the error appears
delete[] pixelColors;
return 0;
}
I'm building it with this CMakeLists.txt file:
cmake_minimum_required(VERSION 3.16.2)
project(acMandelbrotSet_stackoverflow)
set(CMAKE_CXX_STANDARD 17)
set(SRC_FILES
path/to/main.cpp
)
find_package(OpenCL REQUIRED)
set(Boost_INCLUDE_DIR path/to/boost)
include_directories(${Boost_INCLUDE_DIR})
include_directories(path/to/SYCL/include)
set(LIBS PRIVATE ${Boost_LIBRARIES} OpenCL::OpenCL)
add_executable(${PROJECT_NAME} ${SRC_FILES})
set_target_properties(${PROJECT_NAME} PROPERTIES DEBUG_POSTFIX _d)
target_link_libraries(${PROJECT_NAME} ${LIBS})
When I try to run it, I get this message: libc++abi.dylib: terminating with uncaught exception of type trisycl::non_cl_error from path/to/SYCL/include/triSYCL/command_group/detail/task.hpp line: 278 function: trisycl::detail::task::get_kernel, the message was: "Cannot use an OpenCL kernel in this context".
I've tried to create a lambda of mapNumber in the kernel but that didn't make any difference. I've also tried to use this before the end of the scope to catch errors:
try
{
queue.wait_and_throw();
} catch (cl::sycl::exception const& e)
{
std::cout << "Caught synchronous SYCL exception: " << e.what() << std::endl;
}
but nothing was printed to the console except the error from before. And I've also tried to make an event of the queue.submit call and then call event.wait() before the end of the scope but again the exact same output.
Does any body have an idea what else I could try?
The problem is that triSYCL is a research project looking deeper at some aspects of SYCL while not providing a global generic SYCL support for an end-user. I have just clarified this on the README of the project. :-(
Probably the problem here is that the OpenCL SPIR kernel has not been generated.
So you need to first compile the specific (old) Clang & LLVM from triSYCL https://github.com/triSYCL/triSYCL/blob/master/doc/architecture.rst#trisycl-architecture-for-accelerator. But unfortunately there is no simple Clang driver to use all the specific Clang & LLVM to generate the kernels from the SYCL source. Right know it is done with some ad-hoc awful Makefiles (look around https://github.com/triSYCL/triSYCL/blob/master/tests/Makefile#L360) and, even if you can survive to this, you might encounter some bugs...
The good news is now there are several other implementations of SYCL which are quite easier to use, quite more complete and quite less buggy! :-) Look at ComputeCpp, DPC++ and hipSYCL for example.
I made this little currency converter program that convert dollar to franc, but when I put an amount of, for example $2000 and more, I do not have the correct format, I have this: 1.15165e+006.
I want the entire decimal amount.
Thanks
Convert USD to Franc CFA
#include <iostream>
using namespace std;
int main()
{
const double cfa_per_usd {575.825};
cout <<"**********Welcome to the USD to Franc CFA Converter************" << endl;
double cfa {0.0};
cout <<"\nEnter value in USD: ";
double dollar {0};
cin >> dollar;
cfa = dollar * cfa_per_usd;
cout << dollar <<" Dollar(s) is equivalent to " << cfa << " Francs CFA" <<endl;
return 0;
}
I found a partial answer to my problem, I have added the library , then added "fixed" key word and the "setprecision()":
cout << dollar <<" Dollar(s) is equivalent to " << fixed << setprecision(2) << cfa << " Francs CFA" <
But I realized that I only have zeros after the decimal point: just 2 “.00”, I changed the constant to 576.212 for a dollar, so if I convert $2000 I should have 1,1512,424.54 francs, but I just have 1152424.00 francs, the .54 is not there, any idea how to fix it?
I found a partial answer to my problem, I have added the library, then add "fixed" key word and the "setprecision()":
cout << dollar <<" Dollar(s) is equivalent to " << fixed << setprecision(3) << cfa << " Francs CFA" <<endl;
But I realized that I only have zeros after the decimal point: just 2 “.00”, I changed the constant to 576.212 for a dollar, so if I convert $2000 I should have 1,1512,424.54 francs, but I just have 1152424.00 francs, the .54 is not there, any idea how to fix it?
As part of a reverse engineering exercise, I'm trying to write a Z3 solver to find a username and password that satisfy the program below. This is especially tough because the z3py tutorial that everyone refers to (rise4fun) is down.
#include <iostream>
#include <string>
using namespace std;
int main() {
string name, pass;
cout << "Name: ";
cin >> name;
cout << "Pass: ";
cin >> pass;
int sum = 0;
for (size_t i = 0; i < name.size(); i++) {
char c = name[i];
if (c < 'A') {
cout << "Lose: char is less than A" << endl;
return 1;
}
if (c > 'Z') {
sum += c - 32;
} else {
sum += c;
}
}
int r1 = 0x5678 ^ sum;
int r2 = 0;
for (size_t i = 0; i < pass.size(); i++) {
char c = pass[i];
c -= 48;
r2 *= 10;
r2 += c;
}
r2 ^= 0x1234;
cout << "r1: " << r1 << endl;
cout << "r2: " << r2 << endl;
if (r1 == r2) {
cout << "Win" << endl;
} else {
cout << "Lose: r1 and r2 don't match" << endl;
}
}
I got that code from the assembly of a binary, and while it may be wrong I want to focus on writing the solver. I'm starting with the first part, just calculating r1, and this is what I have:
from z3 import *
s = Solver()
sum = Int('sum')
name = Array('name', IntSort(), IntSort())
for c in name:
s.add(c < 65)
if c > 90:
sum += c - 32
else:
sum += c
r1 = Xor(sum, 0x5678)
print s.check()
print s.model()
All I'm asserting is that there are no letters less than 'A' in the array, so I expect to get back an array of any size that has numbers greater than 65.
Obviously this is completely wrong, mainly because it infinite loops. Also, I'm not sure I'm calculating sum correctly, because I don't know if it's initialized to 0. Could someone help figure out how to get this first loop working?
EDIT: I was able to get a z3 script that is close to the C++ code shown above:
from z3 import *
s = Solver()
sum = 0
name = Array('name', BitVecSort(32), BitVecSort(32))
i = Int('i')
for i in xrange(0, 1):
s.add(name[i] >= 65)
s.add(name[i] < 127)
if name[i] > 90:
sum += name[i] - 32
else:
sum += name[i]
r1 = sum ^ 0x5678
passwd = Array('passwd', BitVecSort(32), BitVecSort(32))
r2 = 0
for i in xrange(0, 5):
s.add(passwd[i] < 127)
s.add(passwd[i] >= 48)
c = passwd[i] - 48
r2 *= 10
r2 += c
r2 ^= 0x1234
s.add(r1 == r2)
print s.check()
print s.model()
This code was able to give me a correct username and password. However, I hardcoded the lengths of one for the username and five for the password. How would I change the script so I wouldn't have to hard code the lengths? And how would I generate a different solution each time I run the program?
Arrays in Z3 do not necessarily have any bounds. In this case the index-sort is Int, which means unbounded integers (not machine integers). Consequently, for c in name will run forever because it enumerates name[0], name[1], name[2], ...
It seems that you actually have a bound in the original program (name.size()), so it would suffice to enumerate up to that limit. Otherwise you might need a quantifier, e.g., \forall x of Int sort . name[x] < 65. This comes with all the warnings about quantifiers, of course (see e.g., the Z3 Guide)
Suppose the length is to be determined. Here is what I think you could do:
length = Int('length')
x = Int('x')
s.add(ForAll(x,Implies(And(x>=0,x<length),And(passwd[x] < 127,passwd[x] >=48))))
I have a USB printer device. I want to send file data to the USB printer from Linux. I am using libUsb for my code. I am getting timeout (libusb return value -7) always while sending. But I can able to send data in Windows for the same printer. What went wrong ? It seems ehci or uhci is not sending data to the printer. Please Help .
OS : Ubuntu 12.04 (32 Bit)
The below is my code snippet.
dev_handle = libusb_open_device_with_vid_pid(ctx, PRINTER_VID, PRINTER_PID);
if (dev_handle == NULL)
{
cout << "Cannot open device" << endl;
libusb_free_device_list(devs, 1); //free the list, unref the devices in it
return;
}
else
{
cout << "Device Opened" << endl;
}
if (libusb_kernel_driver_active(dev_handle, 0) == 1) //find out if kernel driver is attached
{
cout << "Kernel Driver Active" << endl;
if (libusb_detach_kernel_driver(dev_handle, 0) == 0) //detach it
cout << "Kernel Driver Detached!" << endl;
}
r = libusb_claim_interface(dev_handle, 0);
if (r < 0)
{
cout << "Cannot Claim Interface" << endl;
return 1;
}
cout << "Claimed Interface" << endl;
cout << "Writing Data..." << endl;
memset(data_buffer,0,64);
while(fgets((char *)data_buffer,64,fp))
{
errno = 0;
r = libusb_bulk_transfer(dev_handle,0x081 | LIBUSB_ENDPOINT_OUT, data_buffer, 64,&actual, 10);
cout<<"The return value of r is "<<r<< "::::" << actual << endl ;
memset(data_buffer,0,64);
}
The output is
The return value of r is -7::::0
The return value of r is -7::::0
Try to execute following comamnd from superuser and then reconnect device.
echo 0 > /sys/bus/usb/drivers_autoprobe
It helped me with some devices.
my problem is just astonishing. This is the code
#define NCHANNEL 3
#define NFRAME 100
Mat RR = Mat::zeros(NCHANNEL, NFRAME-1, CV_64FC1);
double *p_0 = RR.ptr<double>(0);
double *p_1 = RR.ptr<double>(1);
double *p_2 = RR.ptr<double>(2);
cout<< p_0[NFRAME-1] << endl << p_1[NFRAME-1] << endl << p_2[NFRAME-1] << endl;
And the output is: 0 0 -6.27744e+066 .
Where is that awful number come from? it seems I'm printing a pointer or something rough in memory. (uh, 0 is the value of all other elements, of course).
You are accessing after the last element of Mat. If you use NFRAME-1 for initialization then the last element has NFRAME-2 index.