I've been working with the leap for a long time now. 2.1.+ SDK version allows us to access the cameras and get raw images. I want to use those images with OpenCV for square/circle detection and stuff... the problem is i can't get those images undistorted. i read the docs, but don't quite get what they mean. here's one thing i need to understand properly before going forward
distortion_data_ = image.distortion();
for (int d = 0; d < image.distortionWidth() * image.distortionHeight(); d += 2)
{
float dX = distortion_data_[d];
float dY = distortion_data_[d + 1];
if(!((dX < 0) || (dX > 1)) && !((dY < 0) || (dY > 1)))
{
//what do i do now to undistort the image?
}
}
data = image.data();
mat.put(0, 0, data);
//Imgproc.Canny(mat, mat, 100, 200);
//mat = findSquare(mat);
ok.showImage(mat);
in the docs it says something like this "
The calibration map can be used to correct image distortion due to lens curvature and other imperfections. The map is a 64x64 grid of points. Each point consists of two 32-bit values....(the rest on the dev website)"
can someone explain this in detail please, OR OR, just post the java code to undistort the images give me an output MAT image so i may continue processing that (i'd still prefer a good explanation if possible)
Ok, I have no leap camera to test all this, but this is how I understand the documentation:
The calibration map does not hold offsets but full point positions. An entry says where the pixel has to be placed instead. Those values are mapped between 0 and 1, which means that you have to mutiply them by your real image width and height.
What isnt explained explicitly is, how you pixel positions are mapped to 64 x 64 positions of your calibration map. I assume that it's the same way: 640 pixels width are mapped to 64 pixels width and 240 pixels height are mapped to 64 pixels height.
So in general, to move from one of your 640 x 240 pixel positions (pX, pY) to the undistorted position you will:
compute corresponding pixel position in the calibration map: float cX = pX/640.0f * 64.0f; float cY = pY/240.0f * 64.0f;
(cX, cY) is now the locaion of that pixel in the calibration map. You will have to interpolate between two pixel locaions, but I will now only explain how to go on for a discrete location in the calibration map (cX', cY') = rounded locations of (cX, cY).
read the x and y values out of the calibration map: dX, dY as in the documentation. You have to compute the location in the array by: d = dY*calibrationMapWidth*2 + dX*2;
dX and dY are values between 0 and 1 (if not: dont undistort this point because there is no undistortion available. To find out the pixel location in your real image, multiply by the image size: uX = dX*640; uY = dY*240;
set your pixel to the undistorted value: undistortedImage(pX,pY) = distortedImage(uX,uY);
but you dont have discrete point positions in your calibration map, so you have to interpolate. I'll give you an example:
let be (cX,cY) = (13.7, 10.4)
so you read from your calibration map four values:
calibMap(13,10) = (dX1, dY1)
calibMap(14,10) = (dX2, dY2)
calibMap(13,11) = (dX3, dY3)
calibMap(14,11) = (dX4, dY4)
now your undistorted pixel position for (13.7, 10.4) is (multiply each with 640 or 240 to get uX1, uY1, uX2, etc):
// interpolate in x direction first:
float tmpUX1 = uX1*0.3 + uX2*0.7
float tmpUY1 = uY1*0.3 + uY2*0.7
float tmpUX2 = uX3*0.3 + uX4*0.7
float tmpUY2 = uY3*0.3 + uY4*0.7
// now interpolate in y direction
float combinedX = tmpUX1*0.6 + tmpUX2*0.4
float combinedY = tmpUY1*0.6 + tmpUY2*0.4
and your undistorted point is:
undistortedImage(pX,pY) = distortedImage(floor(combinedX+0.5),floor(combinedY+0.5)); or interpolate pixel values there too.
Hope this helps for a basic understanding. I'll try to add openCV remap code soon! The only point thats unclear for me is, whether the mapping between pX/Y and cX/Y is correct, cause thats not explicitly explained in the documentation.
Here is some code. You can skip the first part, where I am faking a distortion and creating the map, which is your initial state.
With openCV it is simple, just resize the calibration map to your image size and multiply all the values with your resolution. The nice thing is, that openCV performs the interpolation "automatically" while resizing.
int main()
{
cv::Mat input = cv::imread("../Data/Lenna.png");
cv::Mat distortedImage = input.clone();
// now i fake some distortion:
cv::Mat transformation = cv::Mat::eye(3,3,CV_64FC1);
transformation.at<double>(0,0) = 2.0;
cv::warpPerspective(input,distortedImage,transformation,input.size());
cv::imshow("distortedImage", distortedImage);
//cv::imwrite("../Data/LenaFakeDistorted.png", distortedImage);
// now fake a calibration map corresponding to my faked distortion:
const unsigned int cmWidth = 64;
const unsigned int cmHeight = 64;
// compute the calibration map by transforming image locations to values between 0 and 1 for legal positions.
float calibMap[cmWidth*cmHeight*2];
for(unsigned int y = 0; y < cmHeight; ++y)
for(unsigned int x = 0; x < cmWidth; ++x)
{
float xx = (float)x/(float)cmWidth;
xx = xx*2.0f; // this if from my fake distortion... this gives some values bigger than 1
float yy = (float)y/(float)cmHeight;
calibMap[y*cmWidth*2+ 2*x] = xx;
calibMap[y*cmWidth*2+ 2*x+1] = yy;
}
// NOW you have the initial situation of your scenario: calibration map and distorted image...
// compute the image locations of calibration map values:
cv::Mat cMapMatX = cv::Mat(cmHeight, cmWidth, CV_32FC1);
cv::Mat cMapMatY = cv::Mat(cmHeight, cmWidth, CV_32FC1);
for(int j=0; j<cmHeight; ++j)
for(int i=0; i<cmWidth; ++i)
{
cMapMatX.at<float>(j,i) = calibMap[j*cmWidth*2 +2*i];
cMapMatY.at<float>(j,i) = calibMap[j*cmWidth*2 +2*i+1];
}
//cv::imshow("mapX",cMapMatX);
//cv::imshow("mapY",cMapMatY);
// interpolate those values for each of your original images pixel:
// here I use linear interpolation, you could use cubic or other interpolation too.
cv::resize(cMapMatX, cMapMatX, distortedImage.size(), 0,0, CV_INTER_LINEAR);
cv::resize(cMapMatY, cMapMatY, distortedImage.size(), 0,0, CV_INTER_LINEAR);
// now the calibration map has the size of your original image, but its values are still between 0 and 1 (for legal positions)
// so scale to image size:
cMapMatX = distortedImage.cols * cMapMatX;
cMapMatY = distortedImage.rows * cMapMatY;
// now create undistorted image:
cv::Mat undistortedImage = cv::Mat(distortedImage.rows, distortedImage.cols, CV_8UC3);
undistortedImage.setTo(cv::Vec3b(0,0,0)); // initialize black
//cv::imshow("undistorted", undistortedImage);
for(int j=0; j<undistortedImage.rows; ++j)
for(int i=0; i<undistortedImage.cols; ++i)
{
cv::Point undistPosition;
undistPosition.x =(cMapMatX.at<float>(j,i)); // this will round the position, maybe you want interpolation instead
undistPosition.y =(cMapMatY.at<float>(j,i));
if(undistPosition.x >= 0 && undistPosition.x < distortedImage.cols
&& undistPosition.y >= 0 && undistPosition.y < distortedImage.rows)
{
undistortedImage.at<cv::Vec3b>(j,i) = distortedImage.at<cv::Vec3b>(undistPosition);
}
}
cv::imshow("undistorted", undistortedImage);
cv::waitKey(0);
//cv::imwrite("../Data/LenaFakeUndistorted.png", undistortedImage);
}
cv::Mat SelfDescriptorDistances(cv::Mat descr)
{
cv::Mat selfDistances = cv::Mat::zeros(descr.rows,descr.rows, CV_64FC1);
for(int keyptNr = 0; keyptNr < descr.rows; ++keyptNr)
{
for(int keyptNr2 = 0; keyptNr2 < descr.rows; ++keyptNr2)
{
double euclideanDistance = 0;
for(int descrDim = 0; descrDim < descr.cols; ++descrDim)
{
double tmp = descr.at<float>(keyptNr,descrDim) - descr.at<float>(keyptNr2, descrDim);
euclideanDistance += tmp*tmp;
}
euclideanDistance = sqrt(euclideanDistance);
selfDistances.at<double>(keyptNr, keyptNr2) = euclideanDistance;
}
}
return selfDistances;
}
I use this as input and fake a remap/distortion from which I compute my calib mat:
input:
faked distortion:
used the map to undistort the image:
TODO: after those computatons use a opencv map with those values to perform faster remapping.
Here's an example on how to do it without using OpenCV. The following seems to be faster than using the Leap::Image::warp() method (probably due to the additional function call overhead when using warp()):
float destinationWidth = 320;
float destinationHeight = 120;
unsigned char destination[(int)destinationWidth][(int)destinationHeight];
//define needed variables outside the inner loop
float calX, calY, weightX, weightY, dX1, dX2, dX3, dX4, dY1, dY2, dY3, dY4, dX, dY;
int x1, x2, y1, y2, denormalizedX, denormalizedY;
int x, y;
const unsigned char* raw = image.data();
const float* distortion_buffer = image.distortion();
//Local variables for values needed in loop
const int distortionWidth = image.distortionWidth();
const int width = image.width();
const int height = image.height();
for (x = 0; x < destinationWidth; x++) {
for (y = 0; y < destinationHeight; y++) {
//Calculate the position in the calibration map (still with a fractional part)
calX = 63 * x/destinationWidth;
calY = 63 * y/destinationHeight;
//Save the fractional part to use as the weight for interpolation
weightX = calX - truncf(calX);
weightY = calY - truncf(calY);
//Get the x,y coordinates of the closest calibration map points to the target pixel
x1 = calX; //Note truncation to int
y1 = calY;
x2 = x1 + 1;
y2 = y1 + 1;
//Look up the x and y values for the 4 calibration map points around the target
// (x1, y1) .. .. .. (x2, y1)
// .. ..
// .. (x, y) ..
// .. ..
// (x1, y2) .. .. .. (x2, y2)
dX1 = distortion_buffer[x1 * 2 + y1 * distortionWidth];
dX2 = distortion_buffer[x2 * 2 + y1 * distortionWidth];
dX3 = distortion_buffer[x1 * 2 + y2 * distortionWidth];
dX4 = distortion_buffer[x2 * 2 + y2 * distortionWidth];
dY1 = distortion_buffer[x1 * 2 + y1 * distortionWidth + 1];
dY2 = distortion_buffer[x2 * 2 + y1 * distortionWidth + 1];
dY3 = distortion_buffer[x1 * 2 + y2 * distortionWidth + 1];
dY4 = distortion_buffer[x2 * 2 + y2 * distortionWidth + 1];
//Bilinear interpolation of the looked-up values:
// X value
dX = dX1 * (1 - weightX) * (1- weightY) + dX2 * weightX * (1 - weightY) + dX3 * (1 - weightX) * weightY + dX4 * weightX * weightY;
// Y value
dY = dY1 * (1 - weightX) * (1- weightY) + dY2 * weightX * (1 - weightY) + dY3 * (1 - weightX) * weightY + dY4 * weightX * weightY;
// Reject points outside the range [0..1]
if((dX >= 0) && (dX <= 1) && (dY >= 0) && (dY <= 1)) {
//Denormalize from [0..1] to [0..width] or [0..height]
denormalizedX = dX * width;
denormalizedY = dY * height;
//look up the brightness value for the target pixel
destination[x][y] = raw[denormalizedX + denormalizedY * width];
} else {
destination[x][y] = -1;
}
}
}
Related
I am wondering which DDX DDY values the SampleGrad() function expects for a TextureCube object.
I know that it's the change in UV coordinates for 2D textures. So I thought, it would be the change in the direction in this case. However, this does not seem to be the case.
I get different results if I try to use the Sample function vs. SampleGrad:
Sample:
// calculate reflected ray
float3 reflRay = reflect(-viewDir, normal);
// reflection map lookup
return reflectionMap.Sample(linearSampler, reflRay);
SampleGrad:
// calculate reflected ray
float3 reflRay = reflect(-viewDir, normal);
// reflection map lookup
float3 dxr = ddx(reflRay);
float3 dyr = ddy(reflRay);
return reflectionMap.SampleGrad(linearSampler, reflRay, dxr, dyr);
I still don't know which values for DDX and DDY are required, but if found an acceptable workaround that computes the level of detail for my gradients. Unfortunately, the quality of this solution is not as good as a real Sample function with anisotropic filtering.
In case anyone needs it:
The computation is described in: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#LODCalculation
My HLSL implementation:
// calculate reflected ray
float3 reflRay = reflect(-viewDir, normal);
// reflection map lookup
float3 dxr = ddx(reflRay);
float3 dyr = ddy(reflRay);
// cubemap size for lod computation
float reflWidth, reflHeight;
reflectionMap.GetDimensions(reflWidth, reflHeight);
// calculate lod based on raydiffs
float lod = calcLod(getCubeDiff(reflRay, dxr).xy * reflWidth, getCubeDiff(reflRay, dyr).xy * reflHeight);
return reflectionMap.SampleLevel(linearSampler, reflRay, lod).rgb;
Helper functions:
float pow2(float x) {
return x * x;
}
// calculates texture coordinates [-1, 1] for the view direction (xy values must be divided by axisMajorValue for proper [-1, 1] range).else
// z coordinate is the faceId
float3 getCubeCoord(float3 viewDir, out float axisMajorValue)
{
// according to dx spec: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#PointSampling
// Choose the largest magnitude component of the input vector. Call this magnitude of this value AxisMajor. In the case of a tie, the following precedence should occur: Z, Y, X.
int axisMajor = 0;
int axisFlip = 0;
axisMajorValue = 0.0;
[unroll] for (int i = 0; i < 3; ++i)
{
if (abs(viewDir[i]) >= axisMajorValue)
{
axisMajor = i;
axisFlip = viewDir[i] < 0.0f ? 1 : 0;
axisMajorValue = abs(viewDir[i]);
}
}
int faceId = axisMajor * 2 + axisFlip;
// Select and mirror the minor axes as defined by the TextureCube coordinate space. Call this new 2d coordinate Position.
int axisMinor1 = axisMajor == 0 ? 2 : 0; // first coord is x or z
int axisMinor2 = 3 - axisMajor - axisMinor1;
// Project the coordinate onto the cube by dividing the components Position by AxisMajor.
//float u = viewDir[axisMinor1] / axisMajorValue;
//float v = -viewDir[axisMinor2] / axisMajorValue;
// don't project for getCubeDiff function!
float u = viewDir[axisMinor1];
float v = -viewDir[axisMinor2];
switch (faceId)
{
case 0:
case 5:
u *= -1.0f;
break;
case 2:
v *= -1.0f;
break;
}
return float3(u, v, float(faceId));
}
float3 getCubeDiff(float3 ray, float3 diff)
{
// from: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#LODCalculation
// Using TC, determine which component is of the largest magnitude, as when calculating the texel location. If any of the components are equivalent, precedence is as follows: Z, Y, X. The absolute value of this will be referred to as AxisMajor.
// select and mirror the minor axes of TC as defined by the TextureCube coordinate space to generate TC'.uv
float axisMajor;
float3 tuv = getCubeCoord(ray, axisMajor);
// select and mirror the minor axes of the partial derivative vectors as defined by the TextureCube coordinate space, generating 2 new partial derivative vectors dX'.uv & dY'.uv.
float derivateMajor;
float3 duv = getCubeCoord(diff, derivateMajor);
// Calculate 2 new dX and dY vectors for future calculations as follows:
// dX.uv = (AxisMajor*dX'.uv - TC'.uv*DerivativeMajorX)/(AxisMajor*AxisMajor)
float3 res;
res.z = 0.0;
res.xy = (axisMajor * duv.xy - tuv.xy * derivateMajor) / (axisMajor * axisMajor);
return res * 0.5;
}
// dx, dy in pixel coordinates
float calcLod(float2 dX, float2 dY)
{
// from: https://microsoft.github.io/DirectX-Specs/d3d/archive/D3D11_3_FunctionalSpec.htm#LODCalculation
float A = pow2(dX.y) + pow2(dY.y);
float B = -2.0 * (dX.x * dX.y + dY.x * dY.y);
float C = pow2(dX.x) + pow2(dY.x);
float F = pow2(dX.x * dY.y - dY.x * dX.y);
float p = A - C;
float q = A + C;
float t = sqrt(pow2(p) + pow2(B));
float lengthX = sqrt(abs(F * (t+p) / ( t * (q+t))) + abs(F * (t-p) / ( t * (q+t))));
float lengthY = sqrt(abs(F * (t-p) / ( t * (q-t))) + abs(F * (t+p) / ( t * (q-t))));
return log2(max(lengthX,lengthY));
}
The Google Maps iOS SDK's heat map (more specifically the Google-Maps-iOS-Utils framework) decides the color to render an area in essentially by calculating the density of the points in that area.
However, I would like to instead select the color based on the average weight or intensity of the points in that area.
From what I understand, this behavior is not built in (but who knows––the documentation sort of sucks). The file where the color-picking is decided is I think in /src/Heatmap/GMUHeatmapTileLayer.mThis is a relatively short file, but I am not very well versed in Objective-C, so I am having some difficulty figuring out what does what. I think -tileForX:y:zoom: in GMUHeatmapTileLayer.m is the important function, but I'm not sure and even if it is, I don't quite know how to modify it. Towards the end of this method, the data is 'convolved' first horizontally and then vertically. I think this is where the intensities are actually calculated. Unfortunately, I do not know exactly what it's doing, and I am afraid of changing things because I suck at obj-c. This is what the convolve parts of this method look like:
- (UIImage *)tileForX:(NSUInteger)x y:(NSUInteger)y zoom:(NSUInteger)zoom {
// ...
// Convolve data.
int lowerLimit = (int)data->_radius;
int upperLimit = paddedTileSize - (int)data->_radius - 1;
// Convolve horizontally first.
float *intermediate = calloc(paddedTileSize * paddedTileSize, sizeof(float));
for (int y = 0; y < paddedTileSize; y++) {
for (int x = 0; x < paddedTileSize; x++) {
float value = intensity[y * paddedTileSize + x];
if (value != 0) {
// convolve to x +/- radius bounded by the limit we care about.
int start = MAX(lowerLimit, x - (int)data->_radius);
int end = MIN(upperLimit, x + (int)data->_radius);
for (int x2 = start; x2 <= end; x2++) {
float scaledKernel = value * [data->_kernel[x2 - x + data->_radius] floatValue];
// I THINK THIS IS WHERE I NEED TO MAKE THE CHANGE
intermediate[y * paddedTileSize + x2] += scaledKernel;
// ^
}
}
}
}
free(intensity);
// Convole vertically to get final intensity.
float *finalIntensity = calloc(kGMUTileSize * kGMUTileSize, sizeof(float));
for (int x = lowerLimit; x <= upperLimit; x++) {
for (int y = 0; y < paddedTileSize; y++) {
float value = intermediate[y * paddedTileSize + x];
if (value != 0) {
int start = MAX(lowerLimit, y - (int)data->_radius);
int end = MIN(upperLimit, y + (int)data->_radius);
for (int y2 = start; y2 <= end; y2++) {
float scaledKernel = value * [data->_kernel[y2 - y + data->_radius] floatValue];
// I THINK THIS IS WHERE I NEED TO MAKE THE CHANGE
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] += scaledKernel;
// ^
}
}
}
}
free(intermediate);
// ...
}
This is the method where the intensities are calculated for each iteration, right? If so, how can I change this to achieve my desired effect (average, not summative colors, which I think are proportional to intensity).
So: How can I have averaged instead of summed intensities by modifying the framework?
I think you are on the right track. To calculate average you divide the point sum by the point count. Since you already have the sums calculated, I think an easy solution would be to also save the count for each point. If I understand it correctly, this it what you have to do.
When allocating memory for the sums also allocate memory for the counts
// At this place
float *intermediate = calloc(paddedTileSize * paddedTileSize, sizeof(float));
// Add this line, calloc will initialize them to zero
int *counts = calloc(paddedTileSize * paddedTileSize, sizeof(int));
Then increase the count in each loop.
// Below this line (first loop)
intermediate[y * paddedTileSize + x2] += scaledKernel;
// Add this
counts[y * paddedTileSize + x2]++;
// And below this line (second loop)
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] += scaledKernel;
// Add this
counts[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit]++;
After the two loops you should have two arrays, one with your sums finalIntensity and one with your counts counts. Now go through the values and calculate the averages.
for (int y = 0; y < paddedTileSize; y++) {
for (int x = 0; x < paddedTileSize; x++) {
int n = y * paddedTileSize + x;
if (counts[n] != 0)
finalIntensity[n] = finalIntensity[n] / counts[n];
}
}
free(counts);
The finalIntensity should now contain your averages.
If you prefer, and the rest of the code makes it possible, you can skip the last loop and instead do the division when using the final intensity values. Just change any subsequent finalIntensity[n] to counts[n] == 0 ? finalIntensity[n] : finalIntensity[n] / counts[n].
I may have just solved the same issue for the java version.
My problem was having a custom gradient with 12 different values.
But my actual weighted data does not necessarily contain all intensity values from 1 to 12.
The problem is, the highest intensity value gets mapped to the highest color.
Also 10 datapoints with intensity 1 that are close by will get the same color as a single point with intensity 12.
So the function where the tile gets created is a good starting point:
Java:
public Tile getTile(int x, int y, int zoom) {
// ...
// Quantize points
int dim = TILE_DIM + mRadius * 2;
double[][] intensity = new double[dim][dim];
int[][] count = new int[dim][dim];
for (WeightedLatLng w : points) {
Point p = w.getPoint();
int bucketX = (int) ((p.x - minX) / bucketWidth);
int bucketY = (int) ((p.y - minY) / bucketWidth);
intensity[bucketX][bucketY] += w.getIntensity();
count[bucketX][bucketY]++;
}
// Quantize wraparound points (taking xOffset into account)
for (WeightedLatLng w : wrappedPoints) {
Point p = w.getPoint();
int bucketX = (int) ((p.x + xOffset - minX) / bucketWidth);
int bucketY = (int) ((p.y - minY) / bucketWidth);
intensity[bucketX][bucketY] += w.getIntensity();
count[bucketX][bucketY]++;
}
for(int bx = 0; bx < dim; bx++)
for (int by = 0; by < dim; by++)
if (count[bx][by] != 0)
intensity[bx][by] /= count[bx][by];
//...
I added a counter and count every addition to the intensities, after that I go through every intensity and calculate the average.
For C:
- (UIImage *)tileForX:(NSUInteger)x y:(NSUInteger)y zoom:(NSUInteger)zoom {
//...
// Quantize points.
int paddedTileSize = kGMUTileSize + 2 * (int)data->_radius;
float *intensity = calloc(paddedTileSize * paddedTileSize, sizeof(float));
int *count = calloc(paddedTileSize * paddedTileSize, sizeof(int));
for (GMUWeightedLatLng *item in points) {
GQTPoint p = [item point];
int x = (int)((p.x - minX) / bucketWidth);
// Flip y axis as world space goes south to north, but tile content goes north to south.
int y = (int)((maxY - p.y) / bucketWidth);
// If the point is just on the edge of the query area, the bucketing could put it outside
// bounds.
if (x >= paddedTileSize) x = paddedTileSize - 1;
if (y >= paddedTileSize) y = paddedTileSize - 1;
intensity[y * paddedTileSize + x] += item.intensity;
count[y * paddedTileSize + x] ++;
}
for (GMUWeightedLatLng *item in wrappedPoints) {
GQTPoint p = [item point];
int x = (int)((p.x + wrappedPointsOffset - minX) / bucketWidth);
// Flip y axis as world space goes south to north, but tile content goes north to south.
int y = (int)((maxY - p.y) / bucketWidth);
// If the point is just on the edge of the query area, the bucketing could put it outside
// bounds.
if (x >= paddedTileSize) x = paddedTileSize - 1;
if (y >= paddedTileSize) y = paddedTileSize - 1;
// For wrapped points, additional shifting risks bucketing slipping just outside due to
// numerical instability.
if (x < 0) x = 0;
intensity[y * paddedTileSize + x] += item.intensity;
count[y * paddedTileSize + x] ++;
}
for(int i=0; i < paddedTileSize * paddedTileSize; i++)
if (count[i] != 0)
intensity[i] /= count[i];
Next is the convolving.
What I did there, is to make sure that the calculated value does not go over the maximum in my data.
Java:
// Convolve it ("smoothen" it out)
double[][] convolved = convolve(intensity, mKernel, mMaxAverage);
// the mMaxAverage gets set here:
public void setWeightedData(Collection<WeightedLatLng> data) {
// ...
// Add points to quad tree
for (WeightedLatLng l : mData) {
mTree.add(l);
mMaxAverage = Math.max(l.getIntensity(), mMaxAverage);
}
// ...
// And finally the convolve method:
static double[][] convolve(double[][] grid, double[] kernel, double max) {
// ...
intermediate[x2][y] += val * kernel[x2 - (x - radius)];
if (intermediate[x2][y] > max) intermediate[x2][y] = max;
// ...
outputGrid[x - radius][y2 - radius] += val * kernel[y2 - (y - radius)];
if (outputGrid[x - radius][y2 - radius] > max ) outputGrid[x - radius][y2 - radius] = max;
For C:
// To get the maximum average you could do that here:
- (void)setWeightedData:(NSArray<GMUWeightedLatLng *> *)weightedData {
_weightedData = [weightedData copy];
for (GMUWeightedLatLng *dataPoint in _weightedData)
_maxAverage = Math.max(dataPoint.intensity, _maxAverage)
// ...
// And then simply in the convolve section
intermediate[y * paddedTileSize + x2] += scaledKernel;
if (intermediate[y * paddedTileSize + x2] > _maxAverage)
intermediate[y * paddedTileSize + x2] = _maxAverage;
// ...
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] += scaledKernel;
if (finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] > _maxAverage)
finalIntensity[(y2 - lowerLimit) * kGMUTileSize + x - lowerLimit] = _maxAverage;
And finally the coloring
Java:
// The maximum intensity is simply the size of my gradient colors array (or the starting points)
Bitmap bitmap = colorize(convolved, mColorMap, mGradient.mStartPoints.length);
For C:
// Generate coloring
// ...
float max = [data->_maxIntensities[zoom] floatValue];
max = _gradient.startPoints.count;
I did this in Java and it worked for me, not sure about the C-code though.
You have to play around with the radius and you could even edit the kernel. Because I found that when I have a lot of homogeneous data (i.e. little variation in the intensities, or a lot of data in general) the heat map will degenerate to a one-colored overlay, because the gradient on the edges will get smaller and smaller.
But hope this helps anyway.
// Erik
I have searched internet and stackoverflow thoroughly, but I haven't found answer to my question:
How can I get/set (both) RGB value of certain (given by x,y coordinates) pixel in OpenCV? What's important-I'm writing in C++, the image is stored in cv::Mat variable. I know there is an IplImage() operator, but IplImage is not very comfortable in use-as far as I know it comes from C API.
Yes, I'm aware that there was already this Pixel access in OpenCV 2.2 thread, but it was only about black and white bitmaps.
EDIT:
Thank you very much for all your answers. I see there are many ways to get/set RGB value of pixel. I got one more idea from my close friend-thanks Benny! It's very simple and effective. I think it's a matter of taste which one you choose.
Mat image;
(...)
Point3_<uchar>* p = image.ptr<Point3_<uchar> >(y,x);
And then you can read/write RGB values with:
p->x //B
p->y //G
p->z //R
Try the following:
cv::Mat image = ...do some stuff...;
image.at<cv::Vec3b>(y,x); gives you the RGB (it might be ordered as BGR) vector of type cv::Vec3b
image.at<cv::Vec3b>(y,x)[0] = newval[0];
image.at<cv::Vec3b>(y,x)[1] = newval[1];
image.at<cv::Vec3b>(y,x)[2] = newval[2];
The low-level way would be to access the matrix data directly. In an RGB image (which I believe OpenCV typically stores as BGR), and assuming your cv::Mat variable is called frame, you could get the blue value at location (x, y) (from the top left) this way:
frame.data[frame.channels()*(frame.cols*y + x)];
Likewise, to get B, G, and R:
uchar b = frame.data[frame.channels()*(frame.cols*y + x) + 0];
uchar g = frame.data[frame.channels()*(frame.cols*y + x) + 1];
uchar r = frame.data[frame.channels()*(frame.cols*y + x) + 2];
Note that this code assumes the stride is equal to the width of the image.
A piece of code is easier for people who have such problem. I share my code and you can use it directly. Please note that OpenCV store pixels as BGR.
cv::Mat vImage_;
if(src_)
{
cv::Vec3f vec_;
for(int i = 0; i < vHeight_; i++)
for(int j = 0; j < vWidth_; j++)
{
vec_ = cv::Vec3f((*src_)[0]/255.0, (*src_)[1]/255.0, (*src_)[2]/255.0);//Please note that OpenCV store pixels as BGR.
vImage_.at<cv::Vec3f>(vHeight_-1-i, j) = vec_;
++src_;
}
}
if(! vImage_.data ) // Check for invalid input
printf("failed to read image by OpenCV.");
else
{
cv::namedWindow( windowName_, CV_WINDOW_AUTOSIZE);
cv::imshow( windowName_, vImage_); // Show the image.
}
The current version allows the cv::Mat::at function to handle 3 dimensions. So for a Mat object m, m.at<uchar>(0,0,0) should work.
uchar * value = img2.data; //Pointer to the first pixel data ,it's return array in all values
int r = 2;
for (size_t i = 0; i < img2.cols* (img2.rows * img2.channels()); i++)
{
if (r > 2) r = 0;
if (r == 0) value[i] = 0;
if (r == 1)value[i] = 0;
if (r == 2)value[i] = 255;
r++;
}
const double pi = boost::math::constants::pi<double>();
cv::Mat distance2ellipse(cv::Mat image, cv::RotatedRect ellipse){
float distance = 2.0f;
float angle = ellipse.angle;
cv::Point ellipse_center = ellipse.center;
float major_axis = ellipse.size.width/2;
float minor_axis = ellipse.size.height/2;
cv::Point pixel;
float a,b,c,d;
for(int x = 0; x < image.cols; x++)
{
for(int y = 0; y < image.rows; y++)
{
auto u = cos(angle*pi/180)*(x-ellipse_center.x) + sin(angle*pi/180)*(y-ellipse_center.y);
auto v = -sin(angle*pi/180)*(x-ellipse_center.x) + cos(angle*pi/180)*(y-ellipse_center.y);
distance = (u/major_axis)*(u/major_axis) + (v/minor_axis)*(v/minor_axis);
if(distance<=1)
{
image.at<cv::Vec3b>(y,x)[1] = 255;
}
}
}
return image;
}
How to draw Optical flow images from ocl::PyrLKOpticalFlow::dense() Which actually calculates both horizontal and vertical component of the Optical flow? So I don't know how to draw them. I'm new to opencv . Can anyone help me?
Syntax :
ocl::PyrLKOpticalFlow::dense(oclMat &prevImg, oclMat& nextImg, oclMat& u, oclMat &v,oclMat &err)
A well establische method used in the optical flow community is to display a motion vector field as a color coded image as you can see at one of the various data sets. E.g MPI dataset or the Middlebury dataset.
Therefor you estimate the length and the angle of your motion vector. And use a HSV to RGB colorspace transformation (see OpenCV cvtColor function) to create your color coded image. Use the angle of your motion vector as H (Hue) - channel and the normalized length as the S (Saturation) - channel and set V (Value) to 1. The the color of your image will show you the direction of your motion and the saturation the length ( speed ).
The code will should like this ( Note if use_value == true, the Saturation will be set to 1 and the Value channel is related to the motion vector length):
void FlowToRGB(const cv::Mat & inpFlow,
cv::Mat & rgbFlow,
const float & max_size ,
bool use_value)
{
if(inpFlow.empty()) return;
if( inpFlow.depth() != CV_32F)
throw(std::exception("FlowToRGB: error inpFlow wrong data type ( has be CV_32FC2"));
const float grad2deg = (float)(90/3.141);
cv::Mat pol(inpFlow.size(), CV_32FC2);
float mean_val = 0, min_val = 1000, max_val = 0;
float _dx, _dy;
for(int r = 0; r < inpFlow.rows; r++)
{
for(int c = 0; c < inpFlow.cols; c++)
{
cv::Point2f polar = cvmath::toPolar(inpFlow.at<cv::Point2f>(r,c));
polar.y *= grad2deg;
mean_val +=polar.x;
max_val = MAX(max_val, polar.x);
min_val = MIN(min_val, polar.x);
pol.at<cv::Point2f>(r,c) = cv::Point2f(polar.y,polar.x);
}
}
mean_val /= inpFlow.size().area();
float scale = max_val - min_val;
float shift = -min_val;//-mean_val + scale;
scale = 255.f/scale;
if( max_size > 0)
{
scale = 255.f/max_size;
shift = 0;
}
//calculate the angle, motion value
cv::Mat hsv(inpFlow.size(), CV_8UC3);
uchar * ptrHSV = hsv.ptr<uchar>();
int idx_val = (use_value) ? 2:1;
int idx_sat = (use_value) ? 1:2;
for(int r = 0; r < inpFlow.rows; r++, ptrHSV += hsv.step1())
{
uchar * _ptrHSV = ptrHSV;
for(int c = 0; c < inpFlow.cols; c++, _ptrHSV+=3)
{
cv::Point2f vpol = pol.at<cv::Point2f>(r,c);
_ptrHSV[0] = cv::saturate_cast<uchar>(vpol.x);
_ptrHSV[idx_val] = cv::saturate_cast<uchar>( (vpol.y + shift) * scale);
_ptrHSV[idx_sat] = 255;
}
}
cv::Mat rgbFlow32F;
cv::cvtColor(hsv, rgbFlow32F, CV_HSV2BGR);
rgbFlow32F.convertTo(rgbFlow, CV_8UC3);}
}
Python
Please refer to opt_flow.py#draw_flow
def draw_flow(img, flow, step=16):
h, w = img.shape[:2]
y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
fx, fy = flow[y,x].T
lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
lines = np.int32(lines + 0.5)
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.polylines(vis, lines, 0, (0, 255, 0))
for (x1, y1), (x2, y2) in lines:
cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1)
return vis
C++
Please can refer to tvl1_optical_flow.cpp#drawOpticalFlow
static void drawOpticalFlow(const Mat_<Point2f>& flow, Mat& dst, float maxmotion = -1)
{
dst.create(flow.size(), CV_8UC3);
dst.setTo(Scalar::all(0));
// determine motion range:
float maxrad = maxmotion;
if (maxmotion <= 0)
{
maxrad = 1;
for (int y = 0; y < flow.rows; ++y)
{
for (int x = 0; x < flow.cols; ++x)
{
Point2f u = flow(y, x);
if (!isFlowCorrect(u))
continue;
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
}
}
}
for (int y = 0; y < flow.rows; ++y)
{
for (int x = 0; x < flow.cols; ++x)
{
Point2f u = flow(y, x);
if (isFlowCorrect(u))
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
}
}
}
I did something like this in my code, a while ago:
calcOpticalFlowPyrLK(frame_prec,frame_cur,v_corners_prec[i],corners_cur,status, err);
for(int j=0; j<corners_cur.size(); j++){
if(status[j]){
line(frame_cur,v_corners_prec[i][j],corners_cur[j],colors[i]);
}
}
Basically I draw a line between the points tracked by the OF in this iteration and the previous ones, this draws the optical flow lines which represent the flow on the image.
Hope this helps..
I'm using the Hough transform in OpenCV to detect lines. However, I know in advance that I only need lines within a very limited range of angles (about 10 degrees or so). I'm doing this in a very performance sensitive setting, so I'd like to avoid the extra work spent detecting lines at other angles, lines I know in advance I don't care about.
I could extract the Hough source from OpenCV and just hack it to take min_rho and max_rho parameters, but I'd like a less fragile approach (have to manually update my code w/ each OpenCV update, etc.).
What's the best approach here?
Well, i've modified the icvHoughlines function to go for a certain range of angles. I'm sure there's cleaner ways that plays with memory allocation as well, but I got a speed gain going from 100ms to 33ms for a range of angle going from 180deg to 60deg, so i'm happy with that.
Note that this code also outputs the accumulator value. Also, I only output 1 line because that fit my purposes but there was no gain really there.
static void
icvHoughLinesStandard2( const CvMat* img, float rho, float theta,
int threshold, CvSeq *lines, int linesMax )
{
cv::AutoBuffer<int> _accum, _sort_buf;
cv::AutoBuffer<float> _tabSin, _tabCos;
const uchar* image;
int step, width, height;
int numangle, numrho;
int total = 0;
float ang;
int r, n;
int i, j;
float irho = 1 / rho;
double scale;
CV_Assert( CV_IS_MAT(img) && CV_MAT_TYPE(img->type) == CV_8UC1 );
image = img->data.ptr;
step = img->step;
width = img->cols;
height = img->rows;
numangle = cvRound(CV_PI / theta);
numrho = cvRound(((width + height) * 2 + 1) / rho);
_accum.allocate((numangle+2) * (numrho+2));
_sort_buf.allocate(numangle * numrho);
_tabSin.allocate(numangle);
_tabCos.allocate(numangle);
int *accum = _accum, *sort_buf = _sort_buf;
float *tabSin = _tabSin, *tabCos = _tabCos;
memset( accum, 0, sizeof(accum[0]) * (numangle+2) * (numrho+2) );
// find n and ang limits (in our case we want 60 to 120
float limit_min = 60.0/180.0*PI;
float limit_max = 120.0/180.0*PI;
//num_steps = (limit_max - limit_min)/theta;
int start_n = floor(limit_min/theta);
int stop_n = floor(limit_max/theta);
for( ang = limit_min, n = start_n; n < stop_n; ang += theta, n++ )
{
tabSin[n] = (float)(sin(ang) * irho);
tabCos[n] = (float)(cos(ang) * irho);
}
// stage 1. fill accumulator
for( i = 0; i < height; i++ )
for( j = 0; j < width; j++ )
{
if( image[i * step + j] != 0 )
//
for( n = start_n; n < stop_n; n++ )
{
r = cvRound( j * tabCos[n] + i * tabSin[n] );
r += (numrho - 1) / 2;
accum[(n+1) * (numrho+2) + r+1]++;
}
}
int max_accum = 0;
int max_ind = 0;
for( r = 0; r < numrho; r++ )
{
for( n = start_n; n < stop_n; n++ )
{
int base = (n+1) * (numrho+2) + r+1;
if (accum[base] > max_accum)
{
max_accum = accum[base];
max_ind = base;
}
}
}
CvLinePolar2 line;
scale = 1./(numrho+2);
int idx = max_ind;
n = cvFloor(idx*scale) - 1;
r = idx - (n+1)*(numrho+2) - 1;
line.rho = (r - (numrho - 1)*0.5f) * rho;
line.angle = n * theta;
line.votes = accum[idx];
cvSeqPush( lines, &line );
}
If you use the Probabilistic Hough transform then the output is in the form of a cvPoint each for lines[0] and lines[1] parameters. We can get x and y co-ordinated for each of the two points by pt1.x, pt1.y and pt2.x and pt2.y.
Then use the simple formula for finding slope of a line - (y2-y1)/(x2-x1). Taking arctan (tan inverse) of that will yield that angle in radians. Then simply filter out desired angles from the values for each hough line obtained.
I think it's more natural to use standart HoughLines(...) function, which gives collection of lines directly in rho and theta terms and select nessessary angle range from it, rather than recalculate angle from segment end points.