Ninject: How to access root object of NamedScope from factory - dependency-injection

In my application I am using Ninject and the NamedScopeExtension. One of the objects deeper in the object graph needs access to the root object that defined the named scope. It seems to me that DefinesNamedScope() does not also imply InNamedScope() and instead a new root object is created when I request the root.
Example:
using System;
using Ninject;
using Ninject.Extensions.NamedScope;
using Ninject.Syntax;
namespace NInjectNamedScope
{
public interface IScopeRoot
{
Guid Guid { get; }
void DoSomething();
}
public interface IFactory
{
Guid Guid { get; }
IOther CreateOther();
}
public interface IOther
{
void SayHello();
}
internal class ScopeRoot : IScopeRoot
{
private readonly IFactory m_factory;
private readonly IResolutionRoot m_kernel;
public Guid Guid { get; private set; }
public ScopeRoot(IFactory factory, IResolutionRoot kernel)
{
m_factory = factory;
m_kernel = kernel;
Guid = Guid.NewGuid();
}
public void DoSomething()
{
Console.WriteLine("ScopeRoot.DoSomething(): Entering");
Console.WriteLine("ScopeRoot GUID: {0}", Guid);
Console.WriteLine("IFactory GUID: {0}", m_factory.Guid);
var other = m_factory.CreateOther();
Console.WriteLine("ScopeRoot.DoSomething(): Other created");
other.SayHello();
Console.WriteLine("ScopeRoot.DoSomething(): Exiting");
}
}
internal class Factory : IFactory
{
private IResolutionRoot m_kernel;
public Guid Guid { get; private set; }
public Factory(IResolutionRoot kernel)
{
m_kernel = kernel;
Guid = Guid.NewGuid();
}
public IOther CreateOther()
{
return m_kernel.Get<IOther>();
}
}
internal class Other : IOther
{
private readonly IScopeRoot m_root;
private readonly IFactory m_factory;
public Other(IScopeRoot root, IFactory factory)
{
m_root = root;
m_factory = factory;
}
public void SayHello()
{
Console.WriteLine("Other.SayHello(): Hello");
Console.WriteLine("Our IScopeRoot has GUID: {0}", m_root.Guid);
Console.WriteLine("Our IFactory has GUID: {0}", m_factory.Guid);
}
}
public class MainClass
{
public static void Main(string[] args)
{
var kernel = new StandardKernel();
kernel.Bind<IScopeRoot>().To<ScopeRoot>().DefinesNamedScope("RootScope");
kernel.Bind<IFactory>().To<Factory>().InNamedScope("RootScope");
kernel.Bind<IOther>().To<Other>().InNamedScope("RootScope");
var root = kernel.Get<IScopeRoot>();
root.DoSomething();
Console.ReadKey();
}
}
}
In this example, Other is receiving the same instance of Factory as the root does, but a new instance of ScopeRoot is created instead of injecting the existing instance that defined the named scope.
How can I access the root of the named scope in a factory? Please note that this example is simplified. In reality, there are several layers of objects between the scope root and the factory method, so I cannot simply pass this to the factory.

Yes you're right, out of the box Ninject can't do .DefinesNamedScope().InNamedScope(). Except maybe for late "creation" (factory, lazy) this couldn't work anyway, because it would create a cyclic dependency.
The simplest way to achieve what you want is to create a "root of the root"... well just one class ActualRoot which is bound with DefinesNamedScope() and gets an IRootScope injected, which again will be bound with .InNamedScope(). The bad thing about this is, that you will need to inject/Get<> an ActualRoot instead of a IRootScope.
As far as i remember, what you can also do instead, is:
Bind<IRootScope>().To<RootScope>()
.InNamedScope(scopeName);
and then retrieve it as follows:
IResolutionRoot.Get<IRootScope>(new NamedScopeParameter(scopeName));
This way you don't need a DefinesNamedScope().

Related

How to new up an object independent of the container? [duplicate]

I'm trying to implement IoC in my windows form application. My choice fell on Simple Injector, because it's fast and lightweight. I also implement unit of work and repository pattern in my apps. Here is the structure:
DbContext:
public class MemberContext : DbContext
{
public MemberContext()
: base("Name=MemberContext")
{ }
public DbSet<Member> Members { get; set; }
protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
base.OnModelCreating(modelBuilder);
modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();\
}
}
Model:
public class Member
{
public int MemberID { get; set; }
public string Name { get; set; }
}
GenericRepository:
public abstract class GenericRepository<TEntity> : IGenericRepository<TEntity>
where TEntity : class
{
internal DbContext context;
internal DbSet<TEntity> dbSet;
public GenericRepository(DbContext context)
{
this.context = context;
this.dbSet = context.Set<TEntity>();
}
public virtual void Insert(TEntity entity)
{
dbSet.Add(entity);
}
}
MemberRepository:
public class MemberRepository : GenericRepository<Member>, IMemberRepository
{
public MemberRepository(DbContext context)
: base(context)
{ }
}
UnitOfWork:
public class UnitOfWork : IUnitOfWork
{
public DbContext context;
public UnitOfWork(DbContext context)
{
this.context = context;
}
public void SaveChanges()
{
context.SaveChanges();
}
private bool disposed = false;
protected virtual void Dispose(bool disposing)
{
if (!this.disposed)
{
if (disposing)
{
context.Dispose();
}
}
this.disposed = true;
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
}
MemberService:
public class MemberService : IMemberService
{
private readonly IUnitOfWork unitOfWork;
private readonly IMemberRepository memberRepository;
public MemberService(IUnitOfWork unitOfWork, IMemberRepository memberRepository)
{
this.unitOfWork = unitOfWork;
this.memberRepository = memberRepository;
}
public void Save(Member member)
{
Save(new List<Member> { member });
}
public void Save(List<Member> members)
{
members.ForEach(m =>
{
if (m.MemberID == default(int))
{
memberRepository.Insert(m);
}
});
unitOfWork.SaveChanges();
}
}
In Member Form I only add a textbox to input member name and a button to save to database. This is the code in member form:
frmMember:
public partial class frmMember : Form
{
private readonly IMemberService memberService;
public frmMember(IMemberService memberService)
{
InitializeComponent();
this.memberService = memberService;
}
private void btnSave_Click(object sender, EventArgs e)
{
Member member = new Member();
member.Name = txtName.Text;
memberService.Save(member);
}
}
I implement the SimpleInjector (refer to http://simpleinjector.readthedocs.org/en/latest/windowsformsintegration.html) in Program.cs as seen in the code below:
static class Program
{
private static Container container;
[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Bootstrap();
Application.Run(new frmMember((MemberService)container.GetInstance(typeof(IMemberService))));
}
private static void Bootstrap()
{
container = new Container();
container.RegisterSingle<IMemberRepository, MemberRepository>();
container.Register<IMemberService, MemberService>();
container.Register<DbContext, MemberContext>();
container.Register<IUnitOfWork, UnitOfWork>();
container.Verify();
}
}
When I run the program and add a member, it doesn't save to database. If I changed container.Register to container.RegisterSingle, it will save to database. From the documentation, RegisterSingle will make my class to be a Singleton. I can't using RegisterLifeTimeScope because it will generate an error
"The registered delegate for type IMemberService threw an exception. The IUnitOfWork is registered as 'Lifetime Scope' lifestyle, but the instance is requested outside the context of a Lifetime Scope"
1) How to use SimpleInjector in Windows Form with UnitOfWork & Repository pattern?
2) Do I implement the patterns correctly?
The problem you have is the difference in lifestyles between your service, repository, unitofwork and dbcontext.
Because the MemberRepository has a Singleton lifestyle, Simple Injector will create one instance which will be reused for the duration of the application, which could be days, even weeks or months with a WinForms application. The direct consequence from registering the MemberRepository as Singleton is that all dependencies of this class will become Singletons as well, no matter what lifestyle is used in the registration. This is a common problem called Captive Dependency.
As a side note: The diagnostic services of Simple Injector are able to spot this configuration mistake and will show/throw a Potential Lifestyle Mismatch warning.
So the MemberRepository is Singleton and has one and the same DbContext throughout the application lifetime. But the UnitOfWork, which has a dependency also on DbContext will receive a different instance of the DbContext, because the registration for DbContext is Transient. This context will, in your example, never save the newly created Member because this DbContext does not have any newly created Member, the member is created in a different DbContext.
When you change the registration of DbContext to RegisterSingleton it will start working, because now every service, class or whatever depending on DbContext will get the same instance.
But this is certainly not the solution because having one DbContext for the lifetime of the application will get you into trouble, as you probably already know. This is explained in great detail in this post.
The solution you need is using a Scoped instance of the DbContext, which you already tried. You are missing some information on how to use the lifetime scope feature of Simple Injector (and most of the other containers out there). When using a Scoped lifestyle there must be an active scope as the exception message clearly states. Starting a lifetime scope is pretty simple:
using (ThreadScopedLifestyle.BeginScope(container))
{
// all instances resolved within this scope
// with a ThreadScopedLifestyleLifestyle
// will be the same instance
}
You can read in detail here.
Changing the registrations to:
var container = new Container();
container.Options.DefaultScopedLifestyle = new ThreadScopedLifestyle();
container.Register<IMemberRepository, MemberRepository>(Lifestyle.Scoped);
container.Register<IMemberService, MemberService>(Lifestyle.Scoped);
container.Register<DbContext, MemberContext>(Lifestyle.Scoped);
container.Register<IUnitOfWork, UnitOfWork>(Lifestyle.Scoped);
and changing the code from btnSaveClick() to:
private void btnSave_Click(object sender, EventArgs e)
{
Member member = new Member();
member.Name = txtName.Text;
using (ThreadScopedLifestyle.BeginScope(container))
{
var memberService = container.GetInstance<IMemberService>();
memberService.Save(member);
}
}
is basically what you need.
But we have now introduced a new problem. We are now using the Service Locator anti pattern to get a Scoped instance of the IMemberService implementation. Therefore we need some infrastructural object which will handle this for us as a Cross-Cutting Concern in the application. A Decorator is a perfect way to implement this. See also here. This will look like:
public class ThreadScopedMemberServiceDecorator : IMemberService
{
private readonly Func<IMemberService> decorateeFactory;
private readonly Container container;
public ThreadScopedMemberServiceDecorator(Func<IMemberService> decorateeFactory,
Container container)
{
this.decorateeFactory = decorateeFactory;
this.container = container;
}
public void Save(List<Member> members)
{
using (ThreadScopedLifestyle.BeginScope(container))
{
IMemberService service = this.decorateeFactory.Invoke();
service.Save(members);
}
}
}
You now register this as a (Singleton) Decorator in the Simple Injector Container like this:
container.RegisterDecorator(
typeof(IMemberService),
typeof(ThreadScopedMemberServiceDecorator),
Lifestyle.Singleton);
The container will provide a class which depends on IMemberService with this ThreadScopedMemberServiceDecorator. In this the container will inject a Func<IMemberService> which, when invoked, will return an instance from the container using the configured lifestyle.
Adding this Decorator (and its registration) and changing the lifestyles will fix the issue from your example.
I expect however that your application will in the end have an IMemberService, IUserService, ICustomerService, etc... So you need a decorator for each and every IXXXService, not very DRY if you ask me. If all services will implement Save(List<T> items) you could consider creating an open generic interface:
public interface IService<T>
{
void Save(List<T> items);
}
public class MemberService : IService<Member>
{
// same code as before
}
You register all implementations in one line using Batch-Registration:
container.Register(typeof(IService<>),
new[] { Assembly.GetExecutingAssembly() },
Lifestyle.Scoped);
And you can wrap all these instances into a single open generic implementation of the above mentioned ThreadScopedServiceDecorator.
It would IMO even be better to use the command / handler pattern (you should really read the link!) for this type of work. In very short: In this pattern every use case is translated to a message object (a command) which is handled by a single command handler, which can be decorated by e.g. a SaveChangesCommandHandlerDecorator and a ThreadScopedCommandHandlerDecorator and LoggingDecorator and so on.
Your example would then look like:
public interface ICommandHandler<TCommand>
{
void Handle(TCommand command);
}
public class CreateMemberCommand
{
public string MemberName { get; set; }
}
With the following handlers:
public class CreateMemberCommandHandler : ICommandHandler<CreateMemberCommand>
{
//notice that the need for MemberRepository is zero IMO
private readonly IGenericRepository<Member> memberRepository;
public CreateMemberCommandHandler(IGenericRepository<Member> memberRepository)
{
this.memberRepository = memberRepository;
}
public void Handle(CreateMemberCommand command)
{
var member = new Member { Name = command.MemberName };
this.memberRepository.Insert(member);
}
}
public class SaveChangesCommandHandlerDecorator<TCommand>
: ICommandHandler<TCommand>
{
private ICommandHandler<TCommand> decoratee;
private DbContext db;
public SaveChangesCommandHandlerDecorator(
ICommandHandler<TCommand> decoratee, DbContext db)
{
this.decoratee = decoratee;
this.db = db;
}
public void Handle(TCommand command)
{
this.decoratee.Handle(command);
this.db.SaveChanges();
}
}
And the form can now depend on ICommandHandler<T>:
public partial class frmMember : Form
{
private readonly ICommandHandler<CreateMemberCommand> commandHandler;
public frmMember(ICommandHandler<CreateMemberCommand> commandHandler)
{
InitializeComponent();
this.commandHandler = commandHandler;
}
private void btnSave_Click(object sender, EventArgs e)
{
this.commandHandler.Handle(
new CreateMemberCommand { MemberName = txtName.Text });
}
}
This can all be registered as follows:
container.Register(typeof(IGenericRepository<>),
typeof(GenericRepository<>));
container.Register(typeof(ICommandHandler<>),
new[] { Assembly.GetExecutingAssembly() });
container.RegisterDecorator(typeof(ICommandHandler<>),
typeof(SaveChangesCommandHandlerDecorator<>));
container.RegisterDecorator(typeof(ICommandHandler<>),
typeof(ThreadScopedCommandHandlerDecorator<>),
Lifestyle.Singleton);
This design will remove the need for UnitOfWork and a (specific) service completely.

AutoMapper+xUnit: Missing type map configuration or unsupported mapping

I cannot figure this one out. I have a N-Tier ASP.MVC application and I am writing my first Unit Test and it seems to fail on my AutoMapper configuration. I have used AutoMapper a million times and never had any problems using it.
I'm sure I am missing something simple, but I have been staring at this for 24 hours now.
Class Library: APP.DOMAIN
public class User : IEntity<int>
{
public int Id { get; set; }
[StringLength(20), Required]
public string UserName { get; set; }
}
Class Library: APP.SERVICE
References App.Domain
public class UserViewModel
{
public int Id { get; set; }
public string UserName { get; set; }
}
I have my AutoMapper bootstrapper in the service layer.
public static class AutoMapperBootstrapper
{
public static void RegisterMappings()
{
Mapper.CreateMap<User, UserViewModel>();
}
}
UserService.cs
public class UserService : IUserService
{
private readonly IUserRepository _userRepository;
public UserService(IUserRepository userRepository)
{
_userRepository = userRepository;
}
public List<UserViewModel> GetUsers()
{
var users = _userRepository.GetAll();
if (users == null)
{
throw new Exception("No users found.");
}
return Mapper.Map<List<UserViewModel>>(users); // FAILS ON AUTOMAPPER
}
}
ASP.MVC Layer: APP.WEB
References App.Service
private void Application_Start(object sender, EventArgs e)
{
// Register AutoMapper
AutoMapperBootstrapper.RegisterMappings();
Mapper.AssertConfigurationIsValid();
// Code that runs on application startup
AreaRegistration.RegisterAllAreas();
GlobalConfiguration.Configure(WebApiConfig.Register);
RouteConfig.RegisterRoutes(RouteTable.Routes);
}
Unit Test Layer:
public class TestUserRepository :IUserRepository
{
public IEnumerable<User> GetAll()
{
var users = new List<User>()
{
new User { Id = 1, UserName = "Mary"},
new User { Id = 2, UserName = "Joe"}
};
return users;
}
}
public class UserServiceTest
{
private IUserService _userService;
private readonly IUserRepository _userRepository;
public UserServiceTest()
{
_userRepository = new TestUserRepository();
}
[Fact]
public void GetUsers_Should_Return_Correct_Number_Of_Users()
{
// Arrange
_userService = new UserService(_userRepository);
// Act
var result = _userService.GetUsers(); // FAILS ON AUTOMAPPER
// Assert
Assert.True(result.Any(u => u.UserName == "Mary"));
}
}
Failing Test Message:
*** Failures ***
Exception
AutoMapper.AutoMapperMappingException: AutoMapper.AutoMapperMappingException : Missing type map configuration or unsupported mapping.
Mapping types:
User -> UserViewModel
App.Data.Model.User -> App.Service.ViewModels.UserViewModel
Destination path:
List`1[0]
Source value:
App.Data.Model.User
at App.Service.Services.UserService.GetUsers() in D:\Repositories\App\App.Service\Services\UserService.cs:line 36
at App.Tests.Service.Tests.UserServiceTest.GetUsers_Should_Return_Correct_Number_Of_Users() in D:\Repositories\App\App.Tests\Service.Tests\UserServiceTest.cs:line 34
A little late to the party but have you tried setting the mapping before running the test?
public class UserServiceTest
{
public UserServiceTest()
{
// register the mappings before running the test
AutoMapperBootstrapper.RegisterMappings();
}
...
}
What we would need to do is Inject Custom Mapper Mock as given below. Add all those custom profiles that you have used for that particular class that you are unit testing and inject ConfigureMapper() in the Constructor of that class which is expecting IMapper Object
public IMapper ConfigureMapper()
{
var config = new MapperConfiguration(cfg =>
{
cfg.AddProfile<CustomProfile>();
cfg.AddProfile<UserCustomProfile>();
cfg.AddProfile<UserWorkProfile>();
});
return config.CreateMapper();
}
Hope this solves the issue.
I'm not sure what the problem is, it's been a while since I've last used AutoMapper, but I'm quite sure that the following will work:
return users.Select(Mapper.Map<UserViewModel>);
I have a problem with this line:
var authorDTO = mapper.Map<AuthorCreationDTO>(AuthorinsideDB);
So I change the version of Autormapper
from:
<PackageReference Include="AutoMapper.Extensions.Microsoft.DependencyInjection" Version="7.0.0" />
to
Version="6.0.0"
and it worked.

How to use Ninject to create instances in child classes?

I am learning how to use nInject for a new application I am developing, and I have created the following sample code that can be copied/pasted into a simple console app. It successfully returns an instance of IFoo, but I have a question about it.
How would I modify the code to have the FooManager class create an instance of the Foo object without doing a 'new'. Does the kernal have to be injected as well? But if the kernal is injected and I change the line to read var foo = _kernel.Get<IFoo>(), isn't that introducing a service locator anti-pattern?
namespace IOCTest
{
class Program
{
static void Main(string[] args)
{
using (IKernel kernel = new StandardKernel(new StandardModule()))
{
// do something with the kernal
var mgr = kernel.Get<IFooManager>();
var foo = mgr.GetById(1);
}
}
}
public class StandardModule : Ninject.Modules.NinjectModule
{
public override void Load()
{
Bind<IDatabase>()
.To<Database>()
.InTransientScope();
Bind<IFooManager>()
.To<FooManager>()
.InTransientScope();
}
}
//******************************************************
public interface IDatabase
{
object[] GetScalar(int id);
}
public class Database : IDatabase
{
public object[] GetScalar(int id)
{
return new object[] { "RowName" };
}
}
//******************************************************
public interface IFooManager
{
IFoo GetById(int id);
}
public class FooManager : IFooManager
{
private IDatabase _db;
public FooManager(IDatabase db) { _db = db; }
public IFoo GetById(int id)
{
var results = _db.GetScalar(id);
var foo = new Foo(); // <-- HOW DO I ELIMINATE THIS DEPENDENCY?
foo.Name = results[0].ToString();
return foo;
}
}
//******************************************************
public interface IFoo
{
string Name { get; set; }
}
public class Foo : IFoo
{
public string Name { get; set; }
}
//******************************************************
}
First you have to think about the purpose of Foo. Is this some kind of a datacontainer or some service?
In the first case your code is perfect like it is. Datacontainers have no dependencies and shouldn't be created by the IoC container.
In the second case read about Ninject.Extensions.Factory.
http://www.planetgeek.ch/2011/12/31/ninject-extensions-factory-introduction/
https://github.com/ninject/ninject.extensions.factory/wiki
There are a couple ways to eliminate that dependency. You could do the same thing you did with the Database dependency and use constructor injection. You could do property injection (https://github.com/ninject/ninject/wiki/Injection-Patterns). Another way, and perhaps what you are looking for, would be service location. To do that you can update your FooManager ctor to require an IKernel. This will be resolved automatically and you can then use the kernel that is passed in to get Foo.
public class FooManager : IFooManager
{
private IDatabase _db;
private IKernel _kernel;
public FooManager(IDatabase db, IKernel kernel) { _db = db; _kernel = kernel;}
public IFoo GetById(int id)
{
var results = _db.GetScalar(id);
// var foo = new Foo(); // <-- HOW DO I ELIMINATE THIS DEPENDENCY?
var foo = kernel.Get<IFoo>(); // Like this perhaps
foo.Name = results[0].ToString();
return foo;
}
}

StructureMap, NHibernate and multiple databases

I'm working on an Asp.Net MVC 3 application using Fluent NHibernate. I'm just attempting to add an IoC container using StructureMap.
I have implemented a custom controller factory which uses StructureMap to create the controller and inject dependencies. Each controller constructor takes one or more services, which in turn take a DAO as constructor argument. Each DAO constructor takes an ISessionFactory.
For my StructureMap NHibernate registry I have the following:
internal class NHibernateRegistry : Registry
{
public NHibernateRegistry()
{
var connectionString = ConfigurationManager.ConnectionStrings["AppDb"].ConnectionString;
For<ISessionFactory>()
.Singleton()
.Use(x => new AppSessionFactory().GetSessionFactory(connectionString));
For<ISession>()
.HybridHttpOrThreadLocalScoped()
.Use(x => x.GetInstance<ISessionFactory>().OpenSession());
}
}
public class AppSessionFactory
{
public ISessionFactory GetSessionFactory(string connectionString)
{
return GetConfig(connectionString)
.BuildSessionFactory();
}
public static FluentConfiguration GetConfig(string connectionString)
{
return Fluently.Configure()
.Database(MsSqlConfiguration.MsSql2005.ConnectionString(x => x.Is(connectionString)))
.Mappings(
x => x.FluentMappings.AddFromAssemblyOf<AppEntity>());
}
}
This all works fine for a single database and single session factory. However the application uses multiple databases.
What is the best way to handle this?
Registering multiple session factories is easy - the problem is selecting the right one when you need it. For example, let's say we have some sort of laboratory that has multiple databases. Each lab has a Location and multiple Samples for that location. We could have a SampleRepository that models that. Each Location has a unique key to identify it (e.g. "LabX", "LabY", "BlackMesa"). We can use that unique key as the name of the database connection string in the app.config file. In this example, we would have three connection strings in the app.config file. Here's a sample connectionStrings section:
<connectionStrings>
<add name="LabX" connectionString="Data Source=labx;User ID=someuser;Password=somepassword"/>
<add name="LabY" connectionString="Data Source=laby;User ID=someuser;Password=somepassword"/>
<add name="BlackMesa" connectionString="Data Source=blackmesa;User ID=freemang;Password=crowbar"/>
</connectionStrings>
Thus, we need to have a unique session factory for each connection string. Let's create a NamedSessionFactory that wraps ISessionFactory:
public interface INamedSessionFactory
{
public string Name { get; } // The name from the config file (e.g. "BlackMesa")
public ISessionFactory SessionFactory { get; }
}
public class NamedSessionFactory : INamedSessionFactory
{
public string Name { get; private set; }
public ISessionFactory SessionFactory { get; private set; }
public NamedSessionFactory(string name, ISessionFactory sessionFactory)
{
Name = name;
SessionFactory = sessionFactory;
}
}
Now we need to modify your AppSessionFactory a bit. First off, what you've created is a session factory factory - that's not quite what we're looking for. We want to give our factory a location and get a session out of it, not a session factory. Fluent NHibernate is what gives us session factories.
public interface IAppSessionFactory
{
ISession GetSessionForLocation(string locationKey);
}
The trick here is accept a list of INamedSessionFactory objects in the constructor. StructureMap should give us all of the INamedSessionFactory objects that we've registered. We'll get to registration in a second.
public class AppSessionFactory : IAppSessionFactory
{
private readonly IList<INamedSessionFactory> _factories;
public AppSessionFactory(IEnumerable<INamedSessionFactory factories)
{
_factories = new List<INamedSessionFactory>(factories);
}
This is where the magic happens. Given a location key, we run through our list of factories looking for one with the same name as locationKey, then ask it to open a session and return it to the caller.
public ISession GetSessionForLocation(string locationKey)
{
var sessionFactory = _factories.Where(x => x.Name == locationKey).Single();
return sessionFactory.OpenSession();
}
}
Now let's wire this all together.
internal class NHibernateRegistry : Registry
{
public NHibernateRegistry()
{
We're going to loop through all of the connection strings in our app.config file (there would be three of them in this example) and register an INamedSessionFactory object for each one.
foreach (ConnectionStringSettings location in ConfigurationManager.ConnectionStrings)
{
For<INamedSessionFactory>()
.Singleton()
.Use(x => new NamedSessionFactory(
location.Name,
GetSessionFactory(location.ConnectionString));
}
We also need to register IAppSessionFactory.
For<IAppSessionFactory>()
.Singleton()
.Use<AppSessionFactory>();
}
You'll notice that we've moved this logic out of the factory class... These are helper methods for creating session factories from Fluent NHibernate.
private static ISessionFactory GetSessionFactory(string connectionString)
{
return GetConfig(connectionString)
.BuildSessionFactory();
}
public static FluentConfiguration GetConfig(string connectionString)
{
return Fluently.Configure()
.Database(MsSqlConfiguration.MsSql2005.ConnectionString(x => x.Is(connectionString)))
.Mappings(
x => x.FluentMappings.AddFromAssemblyOf<AppEntity>());
}
}
That should do it! Let's create a repository for getting at our samples...
public class SampleRepository
{
private readonly IAppSessionFactory _factory;
public SampleRepository(IAppSessionFactory factory)
{
_factory = factory;
}
public IEnumerable<Sample> GetSamplesForLocation(Location location)
{
using (ISession session = _factory.GetSessionForLocation(location.Key)
{
foreach (Sample sample in session.Query<Sample>())
yield return sample;
}
}
}
Now you can get a single instance of SampleRepository and use the GetSamplesForLocation method to pull samples from any of the three databases we have registered in app.config. Might want to avoid BlackMesa though. I understand there were problems there.
Are you sure this thing works? string ISessionFactory
public string ISessionFactory SessionFactory { get; private set; }
should this be
public interface INamedSessionFactory
{
ISessionFactory SessionFactory { get; set; }
string Name { get; }
}
public class NamedSessionFactory : INamedSessionFactory
{
public ISessionFactory SessionFactory { get; set; }
public string Name { get; private set; }
public NamedSessionFactory(string Name, ISessionFactory SessionFactory)
{
this.Name = Name;
this.SessionFactory = SessionFactory;
}
}

Where to place AutoMapper.CreateMaps?

I'm using AutoMapper in an ASP.NET MVC application. I was told that I should move the AutoMapper.CreateMap elsewhere as they have a lot of overhead. I'm not too sure how to design my application to put these calls in just 1 place.
I have a web layer, service layer and a data layer. Each a project of its own. I use Ninject to DI everything. I'll utilize AutoMapper in both web and service layers.
So what are your setup for AutoMapper's CreateMap? Where do you put it? How do you call it?
Doesn't matter, as long as it's a static class. It's all about convention.
Our convention is that each "layer" (web, services, data) has a single file called AutoMapperXConfiguration.cs, with a single method called Configure(), where X is the layer.
The Configure() method then calls private methods for each area.
Here's an example of our web tier config:
public static class AutoMapperWebConfiguration
{
public static void Configure()
{
ConfigureUserMapping();
ConfigurePostMapping();
}
private static void ConfigureUserMapping()
{
Mapper.CreateMap<User,UserViewModel>();
}
// ... etc
}
We create a method for each "aggregate" (User, Post), so things are separated nicely.
Then your Global.asax:
AutoMapperWebConfiguration.Configure();
AutoMapperServicesConfiguration.Configure();
AutoMapperDomainConfiguration.Configure();
// etc
It's kind of like an "interface of words" - can't enforce it, but you expect it, so you can code (and refactor) if necessary.
EDIT:
Just thought I'd mention that I now use AutoMapper profiles, so the above example becomes:
public static class AutoMapperWebConfiguration
{
public static void Configure()
{
Mapper.Initialize(cfg =>
{
cfg.AddProfile(new UserProfile());
cfg.AddProfile(new PostProfile());
});
}
}
public class UserProfile : Profile
{
protected override void Configure()
{
Mapper.CreateMap<User,UserViewModel>();
}
}
Much cleaner/more robust.
You can really put it anywhere as long as your web project references the assembly that it is in. In your situation I would put it in the service layer as that will be accessible by the web layer and the service layer and later if you decide to do a console app or you are doing a unit test project the mapping configuration will be available from those projects as well.
In your Global.asax you will then call the method that sets all of your maps. See below:
File AutoMapperBootStrapper.cs
public static class AutoMapperBootStrapper
{
public static void BootStrap()
{
AutoMapper.CreateMap<Object1, Object2>();
// So on...
}
}
Global.asax on application start
just call
AutoMapperBootStrapper.BootStrap();
Now some people will argue against this method violates some SOLID principles, which they have valid arguments. Here they are for the reading.
Configuring Automapper in Bootstrapper violates Open-Closed Principle?
Update: The approach posted here is no more valid as SelfProfiler has been removed as of AutoMapper v2.
I would take a similar approach as Thoai. But I would use the built-in SelfProfiler<> class to handle the maps, then use the Mapper.SelfConfigure function to initialize.
Using this object as the source:
public class User
{
public int Id { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime BirthDate { get; set; }
public string GetFullName()
{
return string.Format("{0} {1}", FirstName, LastName);
}
}
And these as the destination:
public class UserViewModel
{
public int Id { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
}
public class UserWithAgeViewModel
{
public int Id { get; set; }
public string FullName { get; set; }
public int Age { get; set; }
}
You can create these profiles:
public class UserViewModelProfile : SelfProfiler<User,UserViewModel>
{
protected override void DescribeConfiguration(IMappingExpression<User, UserViewModel> map)
{
//This maps by convention, so no configuration needed
}
}
public class UserWithAgeViewModelProfile : SelfProfiler<User, UserWithAgeViewModel>
{
protected override void DescribeConfiguration(IMappingExpression<User, UserWithAgeViewModel> map)
{
//This map needs a little configuration
map.ForMember(d => d.Age, o => o.MapFrom(s => DateTime.Now.Year - s.BirthDate.Year));
}
}
To initialize in your application, create this class
public class AutoMapperConfiguration
{
public static void Initialize()
{
Mapper.Initialize(x=>
{
x.SelfConfigure(typeof (UserViewModel).Assembly);
// add assemblies as necessary
});
}
}
Add this line to your global.asax.cs file: AutoMapperConfiguration.Initialize()
Now you can place your mapping classes where they make sense to you and not worry about one monolithic mapping class.
For those of you who adhere to the following:
using an ioc container
don't like to break open closed for this
don't like a monolithic config file
I did a combo between profiles and leveraging my ioc container:
IoC configuration:
public class Automapper : IWindsorInstaller
{
public void Install(IWindsorContainer container, IConfigurationStore store)
{
container.Register(Classes.FromThisAssembly().BasedOn<Profile>().WithServiceBase());
container.Register(Component.For<IMappingEngine>().UsingFactoryMethod(k =>
{
Profile[] profiles = k.ResolveAll<Profile>();
Mapper.Initialize(cfg =>
{
foreach (var profile in profiles)
{
cfg.AddProfile(profile);
}
});
profiles.ForEach(k.ReleaseComponent);
return Mapper.Engine;
}));
}
}
Configuration example:
public class TagStatusViewModelMappings : Profile
{
protected override void Configure()
{
Mapper.CreateMap<Service.Contracts.TagStatusViewModel, TagStatusViewModel>();
}
}
Usage example:
public class TagStatusController : ApiController
{
private readonly IFooService _service;
private readonly IMappingEngine _mapper;
public TagStatusController(IFooService service, IMappingEngine mapper)
{
_service = service;
_mapper = mapper;
}
[Route("")]
public HttpResponseMessage Get()
{
var response = _service.GetTagStatus();
return Request.CreateResponse(HttpStatusCode.Accepted, _mapper.Map<List<ViewModels.TagStatusViewModel>>(response));
}
}
The trade-off is that you have to reference the Mapper by the IMappingEngine interface instead of the static Mapper, but that's a convention I can live with.
All of above solutions provide a static method to call (from app_start or any where) that it should call other methods to configure parts of mapping-configuration. But, if you have a modular application, that modules may plug in and out of application at any time, these solutions does not work. I suggest using WebActivator library that can register some methods to run on app_pre_start and app_post_start any where:
// in MyModule1.dll
public class InitMapInModule1 {
static void Init() {
Mapper.CreateMap<User, UserViewModel>();
// other stuffs
}
}
[assembly: PreApplicationStartMethod(typeof(InitMapInModule1), "Init")]
// in MyModule2.dll
public class InitMapInModule2 {
static void Init() {
Mapper.CreateMap<Blog, BlogViewModel>();
// other stuffs
}
}
[assembly: PreApplicationStartMethod(typeof(InitMapInModule2), "Init")]
// in MyModule3.dll
public class InitMapInModule3 {
static void Init() {
Mapper.CreateMap<Comment, CommentViewModel>();
// other stuffs
}
}
[assembly: PreApplicationStartMethod(typeof(InitMapInModule2), "Init")]
// and in other libraries...
You can install WebActivator via NuGet.
In addition to the best answer, a good way is using Autofac IoC liberary to add some automation. With this you just define your profiles regardless of initiations.
public static class MapperConfig
{
internal static void Configure()
{
var myAssembly = Assembly.GetExecutingAssembly();
var builder = new ContainerBuilder();
builder.RegisterAssemblyTypes(myAssembly)
.Where(t => t.IsSubclassOf(typeof(Profile))).As<Profile>();
var container = builder.Build();
using (var scope = container.BeginLifetimeScope())
{
var profiles = container.Resolve<IEnumerable<Profile>>();
foreach (var profile in profiles)
{
Mapper.Initialize(cfg =>
{
cfg.AddProfile(profile);
});
}
}
}
}
and calling this line in Application_Start method:
MapperConfig.Configure();
The above code finds all Profile sub classes and initiate them automatically.
Putting all the mapping logic in 1 location is not a good practice for me. Because the mapping class will be extremely large and very hard to maintain.
I recommend put the mapping stuff together with the ViewModel class in the same cs file. You can easily navigate to the mapping definition you want following this convention. Moreover, while creating the mapping class, you can reference to the ViewModel properties faster since they are in the same file.
So your view model class will look like:
public class UserViewModel
{
public ObjectId Id { get; set; }
public string Firstname { get; set; }
public string Lastname { get; set; }
public string Email { get; set; }
public string Password { get; set; }
}
public class UserViewModelMapping : IBootStrapper // Whatever
{
public void Start()
{
Mapper.CreateMap<User, UserViewModel>();
}
}
From new version of AutoMapper using static method Mapper.Map() is deprecated. So you can add MapperConfiguration as static property to MvcApplication (Global.asax.cs) and use it to create instance of Mapper.
App_Start
public class MapperConfig
{
public static MapperConfiguration MapperConfiguration()
{
return new MapperConfiguration(_ =>
{
_.AddProfile(new FileProfile());
_.AddProfile(new ChartProfile());
});
}
}
Global.asax.cs
public class MvcApplication : System.Web.HttpApplication
{
internal static MapperConfiguration MapperConfiguration { get; private set; }
protected void Application_Start()
{
MapperConfiguration = MapperConfig.MapperConfiguration();
...
}
}
BaseController.cs
public class BaseController : Controller
{
//
// GET: /Base/
private IMapper _mapper = null;
protected IMapper Mapper
{
get
{
if (_mapper == null) _mapper = MvcApplication.MapperConfiguration.CreateMapper();
return _mapper;
}
}
}
https://github.com/AutoMapper/AutoMapper/wiki/Migrating-from-static-API
For those who are (lost) using:
WebAPI 2
SimpleInjector 3.1
AutoMapper 4.2.1 (With Profiles)
Here's how I managed integrating AutoMapper in the "new way". Also,
a Huge thanks to this answer(and question)
1 - Created a folder in the WebAPI project called "ProfileMappers". In this folder I place all my profiles classes which creates my mappings:
public class EntityToViewModelProfile : Profile
{
protected override void Configure()
{
CreateMap<User, UserViewModel>();
}
public override string ProfileName
{
get
{
return this.GetType().Name;
}
}
}
2 - In my App_Start, I have a SimpleInjectorApiInitializer which configures my SimpleInjector container:
public static Container Initialize(HttpConfiguration httpConfig)
{
var container = new Container();
container.Options.DefaultScopedLifestyle = new WebApiRequestLifestyle();
//Register Installers
Register(container);
container.RegisterWebApiControllers(GlobalConfiguration.Configuration);
//Verify container
container.Verify();
//Set SimpleInjector as the Dependency Resolver for the API
GlobalConfiguration.Configuration.DependencyResolver =
new SimpleInjectorWebApiDependencyResolver(container);
httpConfig.DependencyResolver = new SimpleInjectorWebApiDependencyResolver(container);
return container;
}
private static void Register(Container container)
{
container.Register<ISingleton, Singleton>(Lifestyle.Singleton);
//Get all my Profiles from the assembly (in my case was the webapi)
var profiles = from t in typeof(SimpleInjectorApiInitializer).Assembly.GetTypes()
where typeof(Profile).IsAssignableFrom(t)
select (Profile)Activator.CreateInstance(t);
//add all profiles found to the MapperConfiguration
var config = new MapperConfiguration(cfg =>
{
foreach (var profile in profiles)
{
cfg.AddProfile(profile);
}
});
//Register IMapper instance in the container.
container.Register<IMapper>(() => config.CreateMapper(container.GetInstance));
//If you need the config for LinqProjections, inject also the config
//container.RegisterSingleton<MapperConfiguration>(config);
}
3 - Startup.cs
//Just call the Initialize method on the SimpleInjector class above
var container = SimpleInjectorApiInitializer.Initialize(configuration);
4 - Then, in your controller just inject as usually a IMapper interface:
private readonly IMapper mapper;
public AccountController( IMapper mapper)
{
this.mapper = mapper;
}
//Using..
var userEntity = mapper.Map<UserViewModel, User>(entity);
For vb.net programmers using the new Version (5.x) of AutoMapper.
Global.asax.vb:
Public Class MvcApplication
Inherits System.Web.HttpApplication
Protected Sub Application_Start()
AutoMapperConfiguration.Configure()
End Sub
End Class
AutoMapperConfiguration:
Imports AutoMapper
Module AutoMapperConfiguration
Public MapperConfiguration As IMapper
Public Sub Configure()
Dim config = New MapperConfiguration(
Sub(cfg)
cfg.AddProfile(New UserProfile())
cfg.AddProfile(New PostProfile())
End Sub)
MapperConfiguration = config.CreateMapper()
End Sub
End Module
Profiles:
Public Class UserProfile
Inherits AutoMapper.Profile
Protected Overrides Sub Configure()
Me.CreateMap(Of User, UserViewModel)()
End Sub
End Class
Mapping:
Dim ViewUser = MapperConfiguration.Map(Of UserViewModel)(User)

Resources