Is the colormap conversion of openCV linear? - opencv

I have a gray scale image (i.e. 1 channel). I am using the opencv function applyColorMap() to improve the visualization. For example, if I have the code below
applyColorMap(imgGray, imgOut, COLORMAP_RAINBOW);
Somebody does know if the colormap conversion is linear?
(source: opencv.org)

Colormaps used by the opencv function: applyColorMap have a linear relation between them. They are based on GNU Octave / Matlab colormaps
Graphics functions that use pseudocolor - mesh, surf, pcolor, and others - map a color matrix, c, whose values are in the range [cmin, cmax], to an array of indices, k, in the range [1, m]. The values of cmin and cmax are either min(min(c)) and max(max(c)), or are specified by caxis. The mapping is linear, with cmin mapping to index 1 and cmax mapping to index m. The indices are then used with the colormap to determine the color associated with each matrix element. reference

Related

Why do we normalize homography or fundamental matrix?

I want to know about why do we normalize the homography or fundamental matrix? Here is the code in particular.
H = H * (1.0 / H[2, 2]) # Normalization step. H is [3, 3] matrix.
I can understand that we have to normalize the data before computing SVD because of instability caused by linear least squares but why do we normalize it in end?
A homography in 3D space has 8 degrees of freedom by definition, mapping from one plane to another using perspective. Such a homography can be defined by giving four points, which makes eight coordinates (scalars).
A 3x3 matrix has 9 elements, so it has 9 degrees of freedom. That is one degree more than needed for a homography.
The homography doesn't change when the matrix is scaled (multiplied by a scalar). All the math works the same. You don't need to normalize your homography matrix.
It is a good idea to normalize.
For one, it makes the arithmetic somewhat tamer. Have some wikipedia links to fields of study because weaving all these into a coherent sentence... doesn't add anything:
Numerical analysis, Condition number, Floating-point arithmetic, Numerical error, Numerical stability, ...
Also, normalization makes the matrix easier for humans to interpret. The most common normalization is to scale the matrix such that the last element becomes 1. That is convenient because this whole math happens in a projective space, where the projection causes points to be mapped to the w=1 plane, making vectors have a 1 for the last element.
How is the homography matrix provided to you?
For example, in the scene that some library function calculates and provides the homography matrix to you,
if the function specification doesn't mention about the scale...
In an extreme case, the function can be implemented as:
Matrix3x3 CalculateHomographyMatrix( some arguments )
{
Matrix3x3 H = ...; //Homogoraphy Calculation
return Non_Zero_Random_Value * H; //Wow!
}
Element values may become very large or very small and using such values to your process may cause problems (floating point computation errors).

Converting matches from 8-bit 4 channels to 64-bit 1 channel in OpenCV

I have a vector of Point2f which have color space CV_8UC4 and need to convert them to CV_64F, is the following code correct?
points1.convertTo(points1, CV_64F);
More details:
I am trying to use this function to calculate the essential matrix (rotation/translation) through the 5-point algorithm, instead of using the findFundamentalMath included in OpenCV, which is based on the 8-point algorithm:
https://github.com/prclibo/relative-pose-estimation/blob/master/five-point-nister/five-point.cpp#L69
As you can see it first converts the image to CV_64F. My input image is a CV_8UC4, BGRA image. When I tested the function, both BGRA and greyscale images produce valid matrices from the mathematical point of view, but if I pass a greyscale image instead of color, it takes way more to calculate. Which makes me think I'm not doing something correctly in one of the two cases.
I read around that when the change in color space is not linear (which I suppose is the case when you go from 4 channels to 1 like in this case), you should normalize the intensity value. Is that correct? Which input should I give to this function?
Another note, the function is called like this in my code:
vector<Point2f>imgpts1, imgpts2;
for (vector<DMatch>::const_iterator it = matches.begin(); it!= matches.end(); ++it)
{
imgpts1.push_back(firstViewFeatures.second[it->queryIdx].pt);
imgpts2.push_back(secondViewFeatures.second[it->trainIdx].pt);
}
Mat mask;
Mat E = findEssentialMat(imgpts1, imgpts2, [camera focal], [camera principal_point], CV_RANSAC, 0.999, 1, mask);
The fact I'm not passing a Mat, but a vector of Point2f instead, seems to create no problems, as it compiles and executes properly.
Is it the case I should store the matches in a Mat?
I am no sure do you mean by vector of Point2f in some color space, but if you want to convert vector of points into vector of points of another type you can use any standard C++/STL function like copy(), assign() or insert(). For example:
copy(floatPoints.begin(), floatPoints.end(), doublePoints.begin());
or
doublePoints.insert(doublePoints.end(), floatPoints.begin(), floatPoints.end());
No, it is not. A std::vector<cv::Pointf2f> cannot make use of the OpenCV convertTo function.
I think you really mean that you have a cv::Mat points1 of type CV_8UC4. Note that those are RxCx4 values (being R and C the number of rows and columns), and that in a CV_64F matrix you will have RxC values only. So, you need to be more clear on how you want to transform those values.
You can do points1.convertTo(points1, CV_64FC4) to get a RxCx4 matrix.
Update:
Some remarks after you updated the question:
Note that a vector<cv::Point2f> is a vector of 2D points that is not associated to any particular color space, they are just coordinates in the image axes. So, they represent the same 2D points in a grey, rgb or hsv image. Then, the execution time of findEssentialMat doesn't depend on the image color space. Getting the points may, though.
That said, I think your input for findEssentialMat is ok (the function takes care of the vectors and convert them into their internal representation). In this cases, it is very useful to draw the points in your image to debug the code.

Finding the median value of an RGB image in OpenCV?

Is there any easy way of finding the median value of a RGB image in OpenCV using C?
In MATLAB we can just extract the arrays corresponding to the three channels and compute median values for each of the arrays by median(median(array)). Finally, the median value of these three medians (for three channels) can be calculated for the final median value.
You can convert the matrix to a histogram via the calcHist function (once for each channel), then calculate the median for a given channel by using the function available here.
Note: I have not tested that linked code, but it should at least give you an idea of how to get started.

Matlab Camera Calibration - Correct lens distortion

In the Computer Vision System Toolbox for Matlab there are three types of interpolation methods used for Correct lens distortion.
Interpolation method for the function to use on the input image. The interp input interpolation method can be the string, 'nearest', 'linear', or 'cubic'.
My question is: what is the difference between 'nearest', 'linear', or 'cubic' ? and which one implemented in "Zhang" and "Heikkila, J, and O. Silven" methods.
I can't access the paged at the link you wrote in your question (it asks for a username and password) and so I assume your linked page has the same contents of the page http://www.mathworks.it/it/help/vision/ref/undistortimage.html which I quote here:
J = undistortImage(I,cameraParameters,interp) removes lens distortion from the input image, I and specifies the
interpolation method for the function to use on the input image.
Input Arguments
I — Input image
cameraParameters — Object for storing camera parameters
interp — Interpolation method
'linear' (default) | 'nearest' | 'cubic'
Interpolation method for the function to use on
the input image. The interp input interpolation method can be the
string, 'nearest', 'linear', or 'cubic'.
Furthermore, I assume you are referring to these papers:
ZHANG, Zhengyou. A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22.11: 1330-1334.
HEIKKILA, Janne; SILVEN, Olli. A four-step camera calibration procedure with implicit image correction. In: Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on. IEEE, 1997. p. 1106-1112.
I have searched for the word "interpolation" in the two pdf documents Zhang and Heikkila and Silven and I did not find any direct statement about the interpolation method they have used.
To my knowledge, in general, a camera calibration method is concerned on how to estimate the intrinsic, extrinsic and lens distortion parameters (all these parameters are inside the input argument cameraParameters of Matlab's undistortImage function); the interpolation method is part of a different problem, i.e. the problem of "Geometric Image Transformations".
I quote from the OpenCV's page Geometric Image Transformation (I have slightly modified the original omitting some details and adding some definitions, I assume you are working with grey level image):
The functions in this section perform various geometrical
transformations of 2D images. They do not change the image content but
deform the pixel grid and map this deformed grid to the destination
image. In fact, to avoid sampling artifacts, the mapping is done in
the reverse order, from destination to the source. That is, for each
pixel (x, y) of the destination image, the functions compute
coordinates of the corresponding “donor” pixel in the source image and
copy the pixel value:
dst(x,y) = src(f_x(x,y), f_y(x,y))
where
dst(x,y) is the grey value of the pixel located at row x and column y in the destination image
src(x,y) is the grey value of the pixel located at row x and column y in the source image
f_x is a function that maps the row x and the column y to a new row, it just uses coordinates and not the grey level.
f_y is a function that maps the row x and the column y to a new column, it just uses coordinates and not the grey level.
The actual implementations of the geometrical transformations, from
the most generic remap() and to the simplest and the fastest resize()
, need to solve two main problems with the above formula:
• Extrapolation of non-existing pixels. Similarly to the filtering
functions described in the previous section, for some (x,y) , either
one of f_x(x,y) , or f_y(x,y) , or both of them may fall outside of
the image. In this case, an extrapolation method needs to be used.
OpenCV provides the same selection of extrapolation methods as in the
filtering functions. In addition, it provides the method
BORDER_TRANSPARENT . This means that the corresponding pixels in the
destination image will not be modified at all.
• Interpolation of pixel
values. Usually f_x(x,y) and f_y(x,y) are floating-point numbers. This
means that <f_x, f_y> can be either an affine or
perspective transformation, or radial lens distortion correction, and
so on. So, a pixel value at fractional coordinates needs to be
retrieved. In the simplest case, the coordinates can be just rounded
to the nearest integer coordinates and the corresponding pixel can be
used. This is called a nearest-neighbor interpolation. However, a
better result can be achieved by using more sophisticated
interpolation methods, where a polynomial function is fit into some
neighborhood of the computed pixel (f_x(x,y), f_y(x,y)), and then the
value of the polynomial at (f_x(x,y), f_y(x,y)) is taken as the
interpolated pixel value. In OpenCV, you can choose between several
interpolation methods. See resize() for details.
For a "soft" introduction see also for example Cambridge in colour - DIGITAL IMAGE INTERPOLATION.
So let's say you need the grey level of pixel at x=20.2 y=14.7, since x and y are number with a fractional part different from zero you will need to "invent" (compute) the grey level in some way. In the simplest case ('nearest' interpolation) you just say that the grey level at (20.2,14.7) is the grey level you retrieve at (20,15), it is called "nearest" because 20 is the nearest integer value to 20.2 and 15 is the nearest integer value to 14.7.
In the (bi)'linear' interpolation you will compute the value at (20.2,14.7) with a combination of the grey levels of the four pixels at (20,14), (20,15), (21,14), (21,15); for the details on how to compute the combination see the Wikipedia page which has a numeric example.
The (bi)'cubic' interpolation considers the combination of sixteen pixels in order to compute the value at (20.2,14.7), see the Wikipedia page.
I suggest you to try all the three methods, with the same input image, and see the differences in the output image.
Interpolation method is actually independent of the camera calibration. Any time you apply a geometric transformation to an image, such as rotation, re-sizing, or distortion compensation, the pixels in the new image will correspond to points between the pixels of the old image. So you have to interpolate their values somehow.
'nearest' means you simply use the value of the nearest pixel.
'linear' means you use bi-linear interpolation. The new pixel's value is a weighted sum of the values of the neighboring pixels in the input image, where the weights are proportional to distances.
'cubic' means you use a bi-cubic interpolation, which is more complicated than bi-linear, but may give you a smoother image.
A good description of these interpolation methods is given in the documentation for the interp2 function.
And finally, just to clarify, the undistortImage function is in the Computer Vision System Toolbox.

How it calculates shape elongation in opencv?

I have many greyscale images since i have to extract features for comparison.
How can i calculate a shape elongation (a basic shape descriptor: http://www.site.uottawa.ca/~mstoj075/Publications_files/elongation-JMIV.pdf) in opencv (better for python version) for feature extraction?
Sample images: 1) https://docs.google.com/file/d/0ByS6Z5WRz-h2cE1wTGJwRnE5YUU/edit
2) https://docs.google.com/file/d/0ByS6Z5WRz-h2UTFCaVEzaHlXRVk/edit
3) https://docs.google.com/file/d/0ByS6Z5WRz-h2NDgySmJ6NnpId0U/edit
Descriptors (shape moments) are created by iterating over a specific shape, and may or may not use the pixel values. The general form you have is this
cvFindContours()
Accumulator = 0;
for (each pointx in the contour bounding box)
for (each pointy in the contour bounding box)
{
if (cvPointPolygonTest((pointx,pointy),mycontour)) //ie the point is not only in the bounding box, but in the actual contour
Accumulator = Accumulator + MyDescriptor(point,ImageValueAt(point));
}
Accumulator will contain your shape descriptor value.
I can't bother reading your pdf but these integrals on the first page translate into your double loop here.

Resources