I want to declare a public NSString property in my class which acts as a readonly property outside my class but i can assign any value to it inside my class. How can i achieve this behavior.
You have to declare your property in the .h file like this
#interface MyClass : NSObject
#property (strong, nonatomic, readonly) NSString *aString;
#end
but in your .m file you have to have
#interface MyClass () // your anonymous category
#property (strong, nonatomic, readwrite) NSString *aString;
#end
#implementation MyClass
#end
Externally the aString is readonly and internally you can set the value (readwrite).
You are achieving it by implementing a anonymous category also known as class extension in Objective-C
Define the property as readonly in the header and declare it readWrite in the implementation file in a class extension. The property will be readonly outside the classs implementation and read/write in the implementation.
// Interface file:
#interface Test : NSObject
#property (nonatomic, copy, readonly) NSString *propertyString;
#end
// Implementation file:
#interface Test () // Class Extension
#property (nonatomic, copy, readwrite) NSString *propertyString;
#end
#implementation Test
#end
See: Use Class Extensions to Hide Private Information
As #Amin Negm-Awad points out in an answer: the interface and class extension do not need to be in an interface or implementation file albeit this is the usual usage.
In .h file add:
#property(nonatomic,readonly)NSString* property;
In .m file add:
#interface yourClass ()
#property(nonatomic,readwrite)NSString* property;
#end
Define the property as readonly in your header file (interface), and as readwrite in your implementation file. That also allows you easily to make it weak / strong / copy.
This might be quit obvious:
in your .h file declare property as readonly
#property (nonatomic, assign, readonly, getter = isLoading) BOOL loading;
in your .m file declare property as readwrite
#property (nonatomic, assign, readwrite, getter = isLoading) BOOL loading;
This is an example, obviously you should create strong NSString property, and I assume compiler won't allow to set other value outside the class, but inside it will.
Beside the existing answers that told you to define a readonly property and change it to a readwrite property, which is completely correct and the intended pattern (that is, what readwrite is for), I want to add an probably important information:
You put the readonly definition in the interface. (Not header!)
You put the readwrite definition in a class continuation. (Not implementation file)
One might say that this is the same, because interfaces reside in the header and class continuations reside in the implementation file. But this is only the usual case.
You can additionally put class continuations in a third file. Then something like a "friend class" can import it additionally and this "fried class" has write access. I do that very often, when developing frameworks.
MyClass.h: // public header, available for everybody
#interface MyClass : NSObject
#property (readonly, …) id property1; // Everyone can read it
#property (readonly, …) id property2; // Everyone can read it
- (void)method; // Everyone can use it
#end
MyClass_Package.h: // project header, available for framework classes, unavailable for the user of the framework
#interface MyClass()
#property (readwrite, …) id property1; // All classes inside the framework can write it
- (void)packageMethod; // All classes inside the framework can use it
#end
MyClass.m
#interface MyClass() // A second class extension inside .m
#property (readwrite, …) id property2; // Only MyClass can write it
- (void)privateMethod; // Only MyClass can use it
#end
Define the property as readonly in the header, and set it using the underscore syntax.
#property (nonatomic, readonly) NSString *myString;
- (void)someMethodInYourDotMFile {
_myString = YES;
}
Related
I have read in iOS Programming Fundamentals by Matt Neuberg that instance variables are protected, meaning that other classes, except for subclasses of this one, can't see them.
I have a parent class A where I define an ivar list.
(A.m)
#interface A ()
#end
#implementation A
{
NSArray *list;
}
#end
Class B extends A (B.h)
#import "A.h"
#interface B:A
#end
(B.m)
#interface B ()
#end
#implementation B
list =
...
#end
I want to use ivar list in child class B but the compiler doesn't see that the was reference declared in the parent class. I have tried explicitly using #protected but that doesn't work. I don't want to expose ivar list on the public interface. It's an internal structure that is a common element of all subclasses. How can I do this?
Instance variables that are declared outside a class's public interface (in other words, the #interface section) are private by default. You can add a visibility modifier to the declaration to change the visibility of one or more ivars like so:
#implementation A
{
NSNumber *_ivarWithDefaultVisibility;
#protected
NSArray *_list;
NSString *_anotherIvarWithProtectedVisibility;
}
(Note that according to Apple's Cocoa coding guidelines, ivar names should be prefixed with an underscore.)
This is not the usual way to implement protected properties in ObjC. (#protected and #private are very seldom used in Cocoa.) First, use a property, not an ivar. It will make it much cleaner. Declare it this way:
A.h
#interface A : NSObject
// Public interface goes here
#end
A.m
// Declare the property in a class extension inside the implementation file.
// This is the idiomatic way to create a "private" property.
#interface A ()
#property (nonatomic, readwrite, strong) NSArray *list;
#end
A+protected.h
// Enumerated any methods that should be accessible to subclasses here.
// Properties are just a special way of defining methods.
// The word "Protected" is just a category name.
#interface A (Protected)
#property (nonatomic, readwrite, strong) NSArray *list;
#end
B.h
#import "A.h"
#interface B : A
...
#end
B.m
#import "B.h"
#import "A+protected.h"
// ... now you can use self.list ...
This approach allows you to create any kind of "protected" method, not just properties, and is also the technique used to create "friend" classes.
Can I replace an property with new one using some obj-c runtime features.
So I have a class A which contains a property:
#property (nonatomic, strong) Status *status;
So I want to inherit from this class like ClassB : ClassA and have ability to switch original #property (nonatomic, strong) Status *status; to my new property like #property (nonatomic, assign) NSInteger status;
So the reasone why I needed because I don't want to have a full copy of class A which contains 20 properties, so I just want to inherit from it and replace one with needed type.
Not sure if this possible, but I know something like swizzling and some obj-c runtime features can make a magic in the code.
I'm new to objective-C, so apologies if this is repeated somewhere. I have a category(?) that is something like:
inside SomeClass.h:
#interface SomeClass (SomeCategory) <SomeDelegate>
#property (nonatomic, retain) id somePublicProperty;
#property (nonatomic, retain) id someProperty; // <-- i want to move this to "private"
#end
and now in my SomeClass.m, all i have is:
#implementation SomeClass (SomeCategory)
// dynamic setters/getters here for someProperty.
#end
I think the someProperty is public. how do i make this "private"? (in other words, how do i syntactically put this in the .m file? i tried to use
#interface SomeClass (SomeCategory) {
#property (nonatomic, retain) somePrivateProperty;
}
#end
but it just complains that i have duplicate definition of the category. how do i do this correctly?
In your .h file, you should not give the category. Just use:
#interface SomeClass : SomeBaseClass < SomeDelegate>
#property (nonatomic, retain) id somePublicProperty;
#end
In your .m file, define your private property inside a class extension:
#interface SomeClass ()
#property (nonatomic, retain) id somePrivateProperty;
#end
A class extension is not a like category in that it allows you to extend an interface as well as add new storage to your class.
In a class category, you can define new properties, but no storage will be allocated for it, so you have to do it by hand:
#interface SomeClass (SomeBaseCategory)
#property (nonatomic, retain) id somePrivateProperty;
#end
#implementation SomeClass {
id _somePrivateProperty;
}
- (void)setSomePrivateProperty:(id)property {
_somePrivateProperty = property;
}
- (id)somePrivateProperty {
return _somePrivateProperty;
}
#end
Otherwise your app will crash.
In any case, keep in mind that given the dynamic nature of Objective-C, your property will never be fully private, since you can always send a message to an Objective-C object through objc_msgsend and thus set or read the property value.
EDIT:
If you do not have the source code for a class implementation, you cannot define a class extension (as per source linked above).
In this case, you could use object association to define properties.
Just add the category definition in the .m file OUTSIDE the implementation block
Like so:
#interface MyClass (MyCategory)
#property (assign) BOOL myPrivateProperty;
#end
#implementation MyClass
...
#end
Categories are best used for adding capability to code you do not own and cannot change. Adding properties via categories is not impossible, but is much more difficult.
Class Extensions are best used for keeping properties your object needs, but are not intended to be public.
If you do truly need to add properties to this object, the way to do it is with the Objective-C runtime's associated objects
There's an excellent writeup of when/how to use them here
I'm going through a tutorial on core-data in Objective-C and can't understand the following syntax:
#interface RootViewController : UITableViewController <CLLocationManagerDelegate> {
NSMutableArray *eventsArray;
NSManagedObjectContext *managedObjectContext;
CLLocationManager *locationManager;
UIBarButtonItem *addButton;
}
#property (nonatomic, retain) NSMutableArray *eventsArray;
#property (nonatomic, retain) NSManagedObjectContext *managedObjectContext;
#property (nonatomic, retain) CLLocationManager *locationManager;
#property (nonatomic, retain) UIBarButtonItem *addButton;
#end
We have four properties here that are declared in the implementation file, which to my understanding means they are private. What exactly is happening within the curly brackets? Why are these variables put there? And also, is it a class extension? I see () are missing here so probably it is not. What is this kind of syntax called then?
Its not a category.Its just a class named RootViewController which extends UITableViewController and implements protocol CLLocationManagerDelegate.
Coming to your braces ->
generally if you don't create iVars in curly braces, by default they are created with underscore as prefix to them. This is done by compiler.
But here, you explicitly said, that the ivar should be without underscore(_).
Any you should synthesize them as below or else it will give a warning.
#synthesize eventsArray= eventsArray;
It's just a regular definition of a RootViewController class, the #interface doesn't necessarily have to be in a header file, private classes (that shouldn't/don't need to be accessible elsewhere) can also be defined directly in the .m file.
The definitions in the curly braces are just regular instance variables of the RootViewController class.
What you have is called the class interface. It is just the .h file of your program files. .If you want a class category, just do
#interface RootViewController (CategoryName)
and for an extension, inside the .m type
#interface RootViewController ()
#end
#implementation
Variables between curly braces:
{
NSMutableArray *eventsArray;
NSManagedObjectContext *managedObjectContext;
CLLocationManager *locationManager;
UIBarButtonItem *addButton;
}
are just usual variables.
For variable, defined with #property base word:
#property (nonatomic, retain) NSMutableArray *eventsArray;
#property (nonatomic, retain) NSManagedObjectContext *managedObjectContext;
#property (nonatomic, retain) CLLocationManager *locationManager;
#property (nonatomic, retain) UIBarButtonItem *addButton;
created accessor and mutator methods. And also you can define options for those variables in bracers. Plus you can get local synonym for them, using base word #synthesize in .m file, like
#synthesize addButton = myLovelyButton;
then you can use myLovelyButton in .m file instead addButton
Both of these definition do not belong to the category.
For define category just type code like:
#interface <#className#> (<#categoryName#>)
{
//optional variables here
int i;
NSString *s;
}
//optional variables here
#property NSString *str;
//optional methods here
-(void)doSomething;
#end
Then you can implement your methods and use these variables:
#implementation <#className#> (<#categoryName#>)
-(void)doSomething
{
int i = 0;
str = #"blah";
s = #"wow";
NSLog(#"%i - %# - %#",i,str,s);
}
#end
Use that for add your methods to existing classes.
Variables inside brackets directly after the #interface or #implementation are instance variables. These are variables associated with each instance of your class, and thus accessible anywhere in your instance methods.
If you don't put the brackets, you declare global variables. Any variable declared outside of any bracket block will be a global variable, wether these variables are before or after the #implementation directive. And global variables are evil and needs to be avoided at all costs (you can declare global constants, but avoid global variables), especially because they are not thread-safe (and may thus generate bugs that are a mess to debug).
#interface YourClass : ParentClass
{
// Declare instance variables here
int ivar1;
}
// declare instance and class methods here, as well as properties (which are nothing more than getter/setter instance methods)
-(void)printIVar;
#end
// .m
int someGlobalVariable; // Global variable (bad idea!!)
#implementation YourClass
int someOtherGlobalVariable; // Still a bad idea
-(void)printIVar
{
NSLog(#"ivar = %d", ivar1); // you can access ivar1 because it is an instance variable
// Each instance of YourClass (created using [[YourClass alloc] init] will have its own value for ivar1
}
Only modern compilers let you declare instance variables (still in brackets) also inside either your class extension (#interface YourClass () in your .m implementation file) or in your #implementation, in addition to the possibility to declare them after the #interface in your .h. The benefits being to hide those instance variables from external users of your classes, by declaring them in the .m file and not in the .h file anymore, because users of your class don't need to be aware of the internal coding details of your class, but only needs to know the public API.
One final advice: instead of using instance variables, Apple more and more recommends to use #property directly, and let the compiler (explicitely using the #synthesize directive, or implicity with modern LLVM compilers) generate the internal backing variable. So that at the end you generally won't need to declare instance variables at all, and thus omit the empty { } after the #interface directive:
// .h
#interface YourClass : ParentClass
// Declare methods and properties here
#property(nonatomic, assign) int prop1;
-(void)printProp;
#end
// .m
#implementation YourClass
// #synthesize prop1; // That's even not needed with modern LLVM compiler
-(void)printProp
{
NSLog(#"ivar = %d", self.prop1);
}
Sorry if this is stupid... but it confuses me?...
I'm trying a new storyboard app with Xcode and just asked myself why there is a second declaration of the #interface in my implementation file?
.h
#import <UIKit/UIKit.h>
#interface ViewController : UIViewController {
}
#end
.m
#import "ViewController.h"
#interface ViewController ()
#end
#implementation ViewController
....
#end
See Apple's documentation: https://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocCategories.html
It's a class extension, subtly different from a category, since it has no name inside the parentheses. You use it for declaring properties and methods that are intended to be kept private (out of the header), and redeclaring publicly read-only properties and methods as privately read-write. This allows for cleaner encapsulation.
By request, a friendly example:
JYDuckPondManager.h
#interface JYDuckPondManager : NSObject
#property (nonatomic, assign, readonly) NSUInteger duckCount;
#property (nonatomic, assign, readonly) CGFloat waterLevel;
- (JYDuckReaction *)feedDucks:(JYDuckFood *)food;
- (JYDuckReaction *)harassDucks:(JYDuckTaunt *)taunt;
#end
JYDuckPondManager.m (extension, imaginary implementation omitted)
#interface JYDuckPondManager ()
//// Redefined for internal modification
#property (nonatomic, assign, readwrite) NSUInteger duckCount;
#property (nonatomic, assign, readwrite) CGFloat waterLevel;
//// Internally exclusive properties
#property (nonatomic, strong) NSSet *duckPersonalitySet;
#property (nonatomic, assign) CGFloat flockAnxietyLevel;
//// Private messages
- (void)recalculatePondState;
#end
Other objects should be able to interact with the pond, but they're not supposed to know certain things going on in the pond or redefine the pond's statistics. Keeping nuts-and-bolts stuff in the .m extension ensures that the .h is concise and appropriately limited.
The second #interface block in the .m file is an extension. You could add declarations for methods and instance variables you want to use internally within your class.
The second interface #interface ViewController () is a class extension which is like an anonymous category. A class extension is declared like a category only without a name. Declarations found in these extensions directly extend the declarations found in the class’s primary #interface and can sometimes (in some situations) override declarations found in the primary interface.