classification algorithms that return confidences? - machine-learning

Given a machine learning model built on top of scikit-learn, how can I classify new instances but then choose only those with the highest confidence? How do we define confidence in machine learning and how to generate it (if not generated automatically by scikit-learn)? What should I change in this approach if I had more that 2 potential classes?
This is what I have done so far:
# load libraries
from sklearn import neighbors
# initialize NearestNeighbor classifier
knn = neighbors.KNeighborsClassifier(n_neighbors=3)
# train model
knn.fit([[1],[2],[3],[4],[5],[6]], [0,0,0,1,1,1])
# predict ::: get class probabilities
print(knn.predict_proba(1.5))
print(knn.predict_proba(37))
print(knn.predict_proba(3.5))
Example:
Let's assume that we have created a model using the XYZ machine learning algorithm. Let's also assume that we are trying to classify users based on their gender using information such as location, hobbies, and income. Then, we have 10 say new instances that we want to classify. As normal, upon the applying of the model, we get 10 outputs, either M (for male) or F (for female). So far so good. However, I would like to somehow measure the precision of these results and then, by using a hard-coded threshold, leave out those with low precision. My question is on how to measure the precession. Is probability (as given by the predict_proba() function) a good measure? For example, can I say that if probably is between 0.9 and 1 then "keep" (otherwise "omit")? Or I should use a more sophisticated method for doing that? As you can see, I lack theoretical background so any help would be highly appreciated.

While this is more of a stats question I can give answers relative to scikit-learn.
Confidence in machine learning depends on the method used for the model. For exemple with 3-NN (what you used), predict_proba(x) will give you n/3 with x the number of "class 1" among the 3 nearest neighbours from x. You can easily say that if n/3 is smaller than 0.5 that means there are less than 2 "class 1" among the nearest neighbours and that there are more than 2 "class 0". That means your x is more likely to be from "class 0". (I assume you knew that already)
For another method like SVM the confidence can be the distance from the point considered to the hyperplan or for ensemble models it could be the number of aggregated votes towards a certain class. Scikit-learn's predict_proba() uses what is available from the model.
For multiclass problems (imagine Y can be equal to A, B or C) ypu have two main approach that are sometimes directly taken into consideration in scikit learn.
The first approach is OneVsOne. It basically compute every new sample as a AvsB AvsC and BvsC model and takes the most probable (imagine if A wins against B and against C it is very likely that the right class is A, the annoying cases are resolved by taking the class that has the highest confidence in the match ups e.g. if A wins against B, B wins against C and C wins against C, if the confidence of A winning against B is higher than the rest it will most likely be A).
The second approach is OneVsAll, in wich you compute A vs B and C, B vs A and C, C vs A and B and take the class that is the most likely by looking at the confidence scores.
Using scikit-learn's predict() will always give the most likely class based on the confidence scores that predict_proba would give.
I suggest you read this http://scikit-learn.org/stable/modules/multiclass.html very carefully.
EDIT :
Ah I see what you are trying to do. predict_proba() has a big flaw : let's assume you have a big outlier in your new instances (e.g. female with video games and guns as hobbies, software developper as a job etc.) if you use for instance k-NN and your outlier will be in the flock of the other classe's cloud of point predict_proba() could give 1 as a confidence score for Male while the instance is Female. However it will well for undecisive cases (e.g. male or female, with video games and guns as hobbies, and works in a nursery) as predict_proba() will give something around ~0.5.
I don't know if something better can be used tought. If you have enough training samples for doing cross validation I suggest you maybe look toward ROC and PR curves for optimizing your threshold.

Related

How to understand output from a Multiclass Neural Network

Built a flow in Azure ML using a Neural network Multiclass module (for settings see picture).
Some more info about the Multiclass:
The data flow is simple, split of 80/20.
Preparation of the data is made before it goes into Azure. Data looks like this:
My problem comes when I want to make sense of the output and if possible transform/calculate the output to probabilities. Output looks like this:
My question: If scored probabilities output for my model is 0.6 and scored labels = 1, how sure is the model of the scored labels 1? And how sure can I be that actual outcome will be a 1?
Can I safely assume that a scored probabilities of 0.80 = 80% chance of outcome? Or what type of outcomes should I watch out for?
To start with, your are in a binary classification setting, not in a multi-class one (we normally use this term when number of classes > 2).
If scored probabilities output for my model is 0.6 and scored labels = 1, how sure is the model of the scored labels 1?
In practice, the scored probabilities are routinely interpreted as the confidence of the model; so, in this example, we would say that your model has 60% confidence that the particular sample belongs to class 1 (and, complementary, 40% confidence that it belongs to class 0).
And how sure can I be that actual outcome will be a 1?
If you don't have any alternate means of computing such outcomes yourself (e.g. a different model), I cannot see how this question is different from your previous one.
Can I safely assume that a scored probabilities of 0.80 = 80% chance of outcome?
This is the kind of statement that would drive a professional statistician mad; nevertheless, the clarifications above regarding the confidence should be enough for your purposes (they are enough indeed for ML practitioners).
My answer in Predict classes or class probabilities? should also be helpful.

Polynomial regression in machine learning coursera

While going through Andrew NG's Coursera course on machine learning . I found this particular thing that prices of a house might goes down after certain value of x in Quadratic regression equation. Can anyone explain why is it so?
Andrew Ng is trying to show that a Quadratic function doesn't really make sense to represent the price of houses.
This what the graph of a quadratic function might look like -->
The values of a, b and c were chosen randomly for this example.
As you can see in the figure, the graph first rises to a maximum and then begins to dip. This isn't representative of the real-world since the price of a house wouldn't normally come down with an increasingly larger house.
He recommends that we use a different polynomial function to represent this problem better, such as the cubic function.
The values of a, b, c and d were chosen randomly for this example.
In reality, we would use a different method altogether for choosing the best polynomial function to fit a problem. We would try different polynomial functions on a cross-validation dataset and have an algorithm choose the best suited one. We could also manually chose a polynomial function for a dataset if we already know the trend that our data would follow (due to prior mathematical or physical knowledge).

Are NN Classification Outputs Probabilities?

I have just begun to work with Neural Networks using tensor flow and I am really new to this. I trained my first model to make 2 category classifications and I'm a little curious about the output. Let's say we are making a prediction based on whether or not a house price will go up and we get an output like
House A: .99
House B: .75
House C: .55
House D: .40
Can I assume that these outputs are probabilities? So it's more likely that house B will go up, rather than House C. Or Is it just classifying it as C and B will go up and House D will not. Thanks!
Not exactly. A neural network will output a prediction of what you have trained it for. So if you trained it to predict probabilities, it sure will output (predictions of) probabilities. However, if you trained it on an observation that the price actually did go up, say a single output which is 1.0 if the price went up, and 0.0 if the price didn't, then the output will be a regression value of observation given the input. This is not necessarily the probability but can rather be viewed as the confidence of the model.
Yes each number can be thought of as a probability representing how likely a house will go up in price. Just to further clarify, the probability estimate of one house does not affect the probability estimate of the others as they are treated as separate samples. So B being more likely doesn't make C less likely. It's just that B happens to be more likely to go up.
And the classification depends on your threshold. By default I believe most classifiers use 0.5 as their threshold, so in this case A, B, and C are classified to go up and D is classified to go down.

Creating synthetic dataset with known SVM parameters

I want to create a synthetic dataset consisting of 2 classes and 3 features for testing a hyperparameter optimization technique for a SVM classifier with a RBF kernel. The hyperparameters are gamma and C (the cost).
I have created my current 3D synthetic dataset as follows:
I have created 10 based points for each class by sampling from a multivariate normal distribution with mean (1,0,0) and (0,1,0), respectively, and unit variance.
I have added more points to each class by picking a base point at random and then sampling a new point from a normal distribution with mean equal to the chosen base point and variance I/5.
It would be a very cool thing if I could determine the best C and gamma from the dataset (before running SVM), so that I can see if my optimization technique provides me the best parameters in the end.
Is there a possibility to calculate the best gamma and C parameter from the synthetic dataset described above?
Or else is there a way to create a synthetic dataset where the best gamma and C parameters are known?
Very interesting question, but the answer is no. It is completely data specific, even knowing exactly the distributions, unless you have an infinite sample, it is mathematicaly impossible to prove best C/gamma as SVM in the end is purely point-based method (as opposed to density estimation based). Typical comparison is done in a different scenario - you take real data, and fit hyperparams using other techniques, like gaussian processes (bayesian optimization) etc, which generate baseline (and probably will get to optimal C and gamma too, or at least realy close to them). In the end looking for best C and gamma is not complex problem, thus simply run good techniqe (like bayesopt) for a longer time, and you will get your optimas to compare against. Furthermore, remember that the task of hyperparams optimization is not to find a particular C and gamma, it is to find hyperparams yielding best results, and in fact, even for SVM, there might be many sets of "optimal" C and gammas, all yielding the same results (in terms of your finite dataset) despite being very far away from each other.

What is the appropriate Machine Learning Algorithm for this scenario?

I am working on a Machine Learning problem which looks like this:
Input Variables
Categorical
a
b
c
d
Continuous
e
Output Variables
Discrete(Integers)
v
x
y
Continuous
z
The major issue that I am facing is that Output Variables are not totally independent of each other and there is no relation that can be established between them. That is, there is a dependence but not due to the causality (one value being high doesn't imply that the other will be high too but the chances of other being higher will improve)
An Example would be:
v - Number of Ad Impressions
x - Number of Ad Clicks
y - Number of Conversions
z - Revenue
Now, for an Ad to be clicked, it has to first appear on a search, so Click is somewhat dependent on Impression.
Again, for an Ad to be Converted, it has to be first clicked, so again Conversion is somewhat dependent on Click.
So running 4 instances of the problem predicting each of the output variables doesn't make sense to me. Infact there should be some way to predict all 4 together taking care of their implicit dependencies.
But as you can see, there won't be a direct relation, infact there would be a probability that is involved but which can't be worked out manually.
Plus the output variables are not Categorical but are in fact Discrete and Continuous.
Any inputs on how to go about solving this problem. Also guide me to existing implementations for the same and which toolkit to use to quickly implement the solution.
Just a random guess - I think this problem can be targeted by Bayesian Networks. What do you think ?
Bayesian Networks will do fine in your case. Your network won't be that huge either so you can live with exact inference algorithms like graph elimination or junction tree. If you decide to use BNs, then you can use Kevin Murphy's BN toolbox. Here is a link to that. For a more general toolbox that uses Gibbs sampling for approximate Monte Carlo inference, you can use BUGS.
Edit:
As an example look at the famous sprinkler example here. For totally discrete variables, you define the conditional probability tables as in the link. For instance you say that given that today is cloudy, there is a 0.8 probability of rain. You define all probability distributions, where the graph shows the causality relations (i.e. if cloud then rain etc.) Then as query you ask to your inference algorithm questions like, given that grass was wet; was it cloudy, was it raining, was the sprinkler on and so on.
To use BNs one needs a system model that is described in terms of causality relations (Directed Acyclic Graph) and probability transitions. If you wanna learn your system parameters there are techniques like EM algorithm. However, learning the graph structure is a really hard task and supervised machine learning approaches will do better in that case.

Resources